c2h6 hcn ch3cl: Topics by Science.gov

Or you want a quick look:

c2h6 hcn ch3cl: Topics by Science.gov

Sample records for c2h6 hcn ch3cl

  1. Satellite Boreal Measurements over Alaska and Canada During June-July 2004: Simultaneous Measurements of Upper Tropospheric CO, C 2 H 6 , HCN , CH 3 Cl , CH4, C2H2, CH2OH, HCOOH, OCS, and SF6 Mixing Ratios

    [external_link_head]

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Dufour, Gaelle; Boone, Chris D.; Bernath, Peter F.; Chiou, Linda; Coheur, Pierre-Francois; Turquety, Solene; Clerbaux, Cathy

    updating

    Simultaneous ACE (Atmospheric Chemistry Experiment) upper tropospheric CO, C2H6, HCN, CH3Cl, CH4 , C2H2 , CH30H, HCOOH, and OCS measurements show plumes up to 185 ppbv (10 (exp -9) per unit volume) for CO, 1.36 ppbv for C2H6, 755 pptv (10(exp -12) per unit volume) for HCN, 1.12 ppbv for CH3C1, 1.82 ppmv, (10(exp -6) per unit volume) for CH4, 0.178 ppbv for C2H2, 3.89 ppbv for CH30H, 0.843 ppbv for HCOOH, and 0.48 ppbv for OCS in western Canada and Alaska at 50 deg N-68 deg N latitude between 29 June and 23 July 2004. Enhancement ratios and emission factors for HCOOH, CH30H, HCN, C2H6, and OCS relative to CO at 250-350 hPa are inferred from measurements of young plumes compared with lower mixing ratios assumed to represent background conditions based on a CO emission factor derived from boreal measurements. Results are generally consistent with the limited data reported for various vegetative types and emission phases measured in extratropical forests including boreal forests. The low correlation between fire product emission mixing ratios and the S176 mixing ratio is consistent with no significant SF6 emissions from the biomass fires.

  2. The Relationship of HCN , C 2 H 6 , & H2O in Comets: A Key Clue to Origins?

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Charnley, Steven B.; Cordiner, Martin; Paganini, Lucas; Villanueva, Geronimo Luis

    updating

    Background: HCN, C2H6, and H2O are three of the best characterized volatiles in comets. It is often assumed that all three are primary volatiles, native to the nucleus. Here, we compare their properties in 26 comets (9 JFC and 17 Oort-cloud), making 6 points:1. Both HCN and C2H6 are poor proxies for water production. The production rate ratio (Q-ratio) of each trace gas relative to water varies by a factor of six among these comets.2. All 26 comets have Q-ratios HCN/C2H6 > 0.1. In 18 comets the Q-ratios HCN/H2O and C2H6/H2O are correlated, with a mean ratio of 0.33. In 6 comets undergoing complete disruption, this Q-ratio exceeds 0.5.3. Q-ratios HCN/C2H6 are not correlated with Q(H2O), nor are they correlated with dynamical class (Oort cloud vs. JFC).4. The nucleus-centered rotational temperatures measured for H2O and other primary species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly cooler. Could this mean that HCN is not fully developed in the warm near-nucleus region, and instead is at least in part a product species?5. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). Is HCN produced in part from an apolar precursor?6. ALMA maps of HCN and the dust continuum show a slight displacement in their centroids. Is this the signature of extended production of HCN?HCN as a product species: Points 4-6 suggest that HCN may have a significant distributed source. The astrochemical species ammonium cyanide is a strong candidate for this HCN precursor; at moderately low temperatures (HCN and NH3 when warmed. Disruption could eject macroscopic solid NH4CN into the coma where subsequent warming and release could augment

  3. Infrared Solar Spectroscopic Measurements of Free Tropospheric CO, C 2 H 6 , and HCN above Mauna Loa, Hawaii: Seasonal Variations and Evidence for Enhanced Emissions from the Southeast Asian Tropical Fires of updating

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Stephen, T. M.; Pougatchev, N. S.; Fishman, J.; David, S. J.; Blatherwick, R. D.; Novelli, P. C.; Jones, N. B.

    updating

    High spectral resolution (0.003 per cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5N, 155.6W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4-16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first 2 years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4-16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32'N and 45'S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4-16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during the strong El Nino warm phase of updating are the likely source of the elevated emission products.

  4. Infrared Solar Spectroscopic Measurements of Free Tropospheric CO, C 2 H 6 , and HCN above Mauna Loa, Hawaii: Seasonal Variations and Evidence for Enhanced Emissions from the Southeast Asian Fires of updating. Revised

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Stephen, T. M.; Pougatchev, N. S.; Fishman, J.; David, S. J.; Blatherwick, R. D.; Novelli, P. C.; Jones, N. B.;

    updating

    High spectral resolution (0.003/ cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5 deg N, 155.6 deg W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the updating km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first two years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO updating km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32 deg N and 45 deg S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average updating km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during 3 the strong El Nino warm phase of updating are the likely source of the elevated emission products.

  5. A Newly Developed Fluorescence Model for C 2 H 6 ν5 and Application to Cometary Spectra Acquired with NIRSPEC at Keck II

    NASA Astrophysics Data System (ADS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; A'Hearn, Michael F.

    updating

    Accurate rotational temperatures are essential for extracting production rates for parent volatiles in comets. Two strong bands of ethane (ν7 at 2985.39 cm-1 and ν5 at 2895.67 cm-1) are seen in infrared cometary spectra, but the Q-branches of ν7 are not resolved by current instruments and cannot provide an accurate rotational temperature with current models. We developed a fluorescence model for the C2H6 ν5 band that can be used to derive a rotational temperature. We applied our C2H6 ν5 model to high-resolution infrared spectra of the comets C/2004 Q2 Machholz and C/2000 WM1 (LINEAR), acquired with the Near-infrared Echelle Spectrograph on the Keck II telescope. We demonstrate agreement among the rotational temperatures derived from C2H6 ν5 and other species, and between mixing ratios derived from C2H6 ν5 and C2H6 ν7. As a symmetric hydrocarbon, C2H6 is observed only in the infrared, and it is now the fifth molecule (along with H2O, HCN, CO, and H2CO) for which we can derive a reliable rotational temperature from cometary infrared spectra.

  6. Identification and measurement of atmospheric ethane (C 2 H 6 ) from a 1951 infrared solar spectrum

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Levine, Joel S.

    updating

    C2H6 absorption features in the 2980/cm spectral region of the solar spectrum recorded in April, 1951 were analyzed to determine the total vertical column amount and average free tropospheric mixing ratio of C2H6 above Jungfraujoch in the Swiss Alps. The PQ1 subbranch is the best isolated of the three C2H6 features in the 1951 spectrum, with an equivalent width of 0.0099 + or - 0.0025/cm. Results give a total vertical column amount of 9.7 x 10 to the 15th C2H6 molecules/sq cm, with an accuracy of + or - 30 percent. March 1981 measurements from this region give a mixing ratio of about 2.0 ppbv, 2.2 times larger than the 1951 value, suggesting a long-term increase in the free tropospheric C2H6 concentration over western Europe.

  7. Photodissociation of the CH 3 Cl /+/ and N2O/+/ cations.

    NASA Technical Reports Server (NTRS)

    Dunbar, R. C.

    updating

    Use of the ion cyclotron resonance (icr) technique to observe the photodissociation of the cations CH3Cl(+) and N2O(+) in the gas phase. Ions were trapped in the icr cell for periods of the order of seconds, which permitted the photodissociation process to be observed with wavelength-selected light. A cyclotron resonance ejection technique was employed to show that CH3Cl(+) ions were being dissociated rather than the CH3ClH(+) ions which were also present. The photodissociation cross section for N2O(+) was found to be without strong wavelength dependence between 4000 and 6500 A. The cross section for CH3Cl(+) showed a large peak at 3150 A. Possible assignments of this peak are considered, and it is suggested that a photodissociation occurs through an ion excitation involving a change in occupation of the bonding or antibonding orbitals of the C-Cl bond.

  8. Experimental ion mobility measurements in Xe-C 2 H 6

    NASA Astrophysics Data System (ADS)

    Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    updating

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon (Xe) with ethane (C2H6) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 Td to 25 Td range (2.4-6.1 kVṡcm-1ṡ bar-1), at room temperature. The time of arrival spectra revealed two peaks throughout the entire range studied which were attributed to ion species with 3-carbons (C3H5+, C3H6+ C3H8+ and C3H9+) and with 4-carbons (C4H7+, C4H9+ and C4H10+). Besides these, and for Xe concentrations above 70%, a bump starts to appear at the right side of the main peak for reduced electric fields higher than 20 Td, which was attributed to the resonant charge transfer of C2H6+ to C2H6 that affects the mobility of its ion products (C3H8+ and C3H9+). The time of arrival spectra for Xe concentrations of 20%, 50%, 70% and 90% are presented, together with the reduced mobilities as a function of the Xe concentration calculated from the peaks observed for the low reduced electric fields and pressures studied.

  9. Rate constants for the reactions of OH with CH 3 Cl , CH2Cl2, CHCl3, and CH3Br

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; Demore, W. B.

    updating

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  10. Matrix isolation infrared spectra, assignment and DFT investigation on reactions of iron and manganese monoxides with CH 3 Cl .

    PubMed

    Zhao, Yanying; Fan, Kexue; Huang, Yongfei; Zheng, Xuming

    updating

    The reactions of iron and manganese monoxide molecules (FeO, and MnO) with monochloromethane in solid argon have been studied by matrix isolation infrared spectroscopy and quantum chemistry calculations. When annealing, the reactions of FeO and MnO with CH3Cl first form the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes, which can isomerize to CH3MOCl (MMn, Fe) upon 300CH3Cl and density functional calculations. Based on theoretical calculations, the OFe-(η(Cl)-CH3Cl) and OMn-(η(Cl)-CH3Cl) complexes have (5)A' and (6)A' ground state with Cs symmetry, respectively. The accurate CCSD(T) single point calculations illustrate the CH3MOCl isomerism are 13.8 and 3.1 kcal/mol lower in energy than the OM-(η(Cl)-CH3Cl) (MMn, Fe) complexes. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Meridional Variations of C2H2 and C 2 H 6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    updating

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -updating microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  12. Meridional Variations of C2H2 and C 2 H 6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    updating

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  13. The Effect of N2 Photoabsorption Cross Section Resolution on C 2 H 6 Production in Titan’s Ionosphere

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Mandt, Kathleen E.; Plessis, Sylvain; Greathouse, Thomas K.

    updating

    Titan’s rich organic chemistry begins with the photochemistry of only two molecules: N2 and CH4. The details on how higher-order hydrocarbons and nitriles are formed from these molecules have key implications for both the structure and evolution of Titan’s atmosphere, and for its surface-atmosphere interactions. Of high importance is the production of C2H6, which is a sink for CH4, and a main component in the polar lakes. Results of photochemical models, though, may be sensitive to the choice of input parameters, such as the N2 photoabsorption cross section resolution, as previously shown for nitrogen (Liang et al. (2007) ApJL 664, 115-118), and CH4 (Lavvas et al. (2011) Icarus 213, 233-251). Here we investigate the possibility of the same effect on the production rates of C2H6. We modeled production and loss rates, as well as mixing ratio and density profiles between an altitude of 600 and 1600 km for low and high resolution N2 cross sections via a coupled ion-neutral-thermal model (De La Haye et al. (2008) Icarus 197, 110-136; Mandt et al. (2012) JGR 117, E10006). Our results show a clear impact of photoabsorption cross section resolution used on all neutral and ion species contributing to C2H6 production. The magnitude of the influence varies amongst species. Ethane production profiles exhibit a significant increase with better resolution; a factor of 1.2 between 750 and 950 km, and a factor of 1.1 in the total column-integrated production rate. These values are lower limits, as additional reactions involving C2H5 not included in the model may also contribute to the production rates. The clear effect on C2H6 (which is not a parent molecule, nor does it bear nitrogen) may have important implications for other molecules in Titan’s atmosphere as well. The possible non-negligible impact of an isotope of nitrogen may argue for the inclusion of isotopes in photochemical models. For future analysis, development of a more efficient and streamlined model called

  14. Q branches of the nu7 fundamental of ethane (C 2 H 6 ) Integrated intensity measurements for atmospheric measurement applications

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Harvey, G. A.; Levine, J. S.; Smith, M. A. H.; Malathy Devi, V.; Thakur, K. B.

    updating

    Laboratory spectra covering the nu7 band of ethane (C2H6) have been recorded, and measurements of integrated intensities of selected Q branches from these spectra are reported. The method by which the spectra were obtained is described, and a typical spectrum covering the PQ3 branch at 2976.8/cm is shown along with a plot of equivalent width vs. optical density for this branch. The values of the integrated intensities reported for each branch are the means of five different optical densities.

  15. Observations of CH4, C 2 H 6 , and C2H2 in the stratosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Sada, P. V.; Bjoraker, G. L.; Jennings, D. E.; McCabe, G. H.; Romani, P. N.

    updating

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2Hupdating micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are updating) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. c1998 Academic Press.

  16. Gas-phase hydrogen atom abstraction reactions of S- with H2, CH4, and C 2 H 6

    NASA Astrophysics Data System (ADS)

    Angel, Laurence A.; Dogbevia, Moses K.; Rempala, Katarzyna M.; Ervin, Kent M.

    updating

    Reaction cross sections, product axial velocity distributions, and potential energy surfaces are presented for the hydrogen atom abstraction reactions S-+RH→R+HS- (R=H, CH3, C2H5) as a function of collision energy. The observed threshold energy, E0, for S-+H2→H+HS- agrees with the reaction endothermicity, ΔrH0. At low collision energies, the H+HS- products exhibit symmetric, low-recoil-velocity scattering, consistent with statistical reaction behavior. The S-+CH4→CH3+HS- and S-+C2H6→C2H5+HS reactions, in contrast, show large excess threshold energies when compared to ΔrH0. The excess energies are partly explained by a potential energy barrier separating products from reactants. However, additional dynamical constraints must account for more than half of the excess threshold energy. The observed behavior seems to be general for collisional activation of anion-molecule reactions that proceed through a tight, late transition state. For RH=CH4 and C2H6, the HS- velocity distributions show anisotropic backward scattering at low collision energies indicating small impact parameters and a direct rebound reaction mechanism. At higher collision energies, there is a transition to HS- forward scattering and high velocities consistent with grazing collisions and a stripping mechanism.

  17. Balloon-borne and aircraft infrared measurements of ethane (C 2 H 6 ) in the upper troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Murcray, D. G.; Rinsland, C. P.; Coffey, M. T.; Mankin, W. G.

    updating

    Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the nu9 band at 12.2 microns, which have been identified in high-resolution balloon-borne and aircraft solar absorption spectra. The balloon-borne spectral data were recorded at sunset with the 0.02/cm resolution University of Denver interferometer system, from a float altitude of 33.5 km near Alamogordo, New Mexico, on March 23, 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06/cm resolution interferometer aboard a jet aircraft at 12 km altitude, near 35 deg N, 96 deg W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the column value obtained from the aircraft data.

  18. Time-resolved double resonance study of J- and K-changing rotational collisional processes in CH 3 Cl

    NASA Astrophysics Data System (ADS)

    Pape, Travis W.; De Lucia, Frank C.; Skatrud, David D.

    updating

    Time-resolved double resonance spectroscopy using infrared pump radiation and millimeter-wave and submillimeter-wave probe radiation (IRMMDR) has been used to study rotational energy transfer (RET) in CH3Cl. A collisional energy transfer model using only five parameters for RET plus those needed for vibrational processes is shown to accurately model 350 IRMMDR time responses for two different pump states and 43 probe transitions covering a wide range of rotational states. Previous studies in this laboratory have revealed that J- and K-changing RET have vastly different characters in CH3F [J. Chem. Phys. 92, updating)]. Both J- and K-changing RET were accurately modeled with four parameters—one for dipole-dipole collisions, two for the ΔJ scaling law, and one for the cumulative rate of K-changing collisions. As was found for CH3F, J-changing rotational collision rates in CH3Cl are modeled accurately by both the statistical power gap (SPG) law and the infinite order sudden approximation using a power law expression for the basis rates (IOS-P). However, in contrast to CH3F, where all IRMMDR time responses for K-changing collisions have the same shape, many time responses of CH3Cl states populated by K-changing collisions contain an additional early time feature (ETF) that varies with pump and probe states. Nonetheless, a simple generalization of the previously reported model for K-changing collisions is shown to account for all of the additional features observed in CH3Cl. Rather than observing a fixed temperature for K-changing collisions as was the case for CH3F, the temperature is found to be a function of time for CH3Cl. Moreover, the two new parameters this adds to the RET model are related to known physical quantities. A qualitative argument of K-changing collisions based on a classical picture is offered to explain the difference between the measured J- and K-changing state-to-state rates in CH3Cl.

  19. Characterization of interferences to in situ observations of δ13CH4 and C 2 H 6 when using a cavity ring-down spectrometer at industrial sites

    NASA Astrophysics Data System (ADS)

    Assan, Sabina; Baudic, Alexia; Guemri, Ali; Ciais, Philippe; Gros, Valerie; Vogel, Felix R.

    updating

    Due to increased demand for an understanding of CH4 emissions from industrial sites, the subject of cross sensitivities caused by absorption from multiple gases on δ13CH4 and C2H6 measured in the near-infrared spectral domain using CRDS has become increasingly important. Extensive laboratory tests are presented here, which characterize these cross sensitivities and propose corrections for the biases they induce. We found methane isotopic measurements to be subject to interference from elevated C2H6 concentrations resulting in heavier δ13CH4 by +23.5 ‰ per ppm C2H6 / ppm CH4. Measured C2H6 is subject to absorption interference from a number of other trace gases, predominantly H2O (with an average linear sensitivity of 0.9 ppm C2H6 per % H2O in ambient conditions). Yet, this sensitivity was found to be discontinuous with a strong hysteresis effect and we suggest removing H2O from gas samples prior to analysis. The C2H6 calibration factor was calculated using a GC and measured as 0.5 (confirmed up to 5 ppm C2H6). Field tests at a natural gas compressor station demonstrated that the presence of C2H6 in gas emissions at an average level of 0.3 ppm shifted the isotopic signature by 2.5 ‰, whilst after calibration we find that the average C2H6 : CH4 ratio shifts by +0.06. These results indicate that, when using such a CRDS instrument in conditions of elevated C2H6 for CH4 source determination, it is imperative to account for the biases discussed within this study.

  20. Hybrid Quantum Mechanical/Molecular Mechanics Study of the SN2 Reaction of CH 3 Cl +OH- in Water

    SciTech Connect

    Yin, Hongyun; Wang, Dunyou; Valiev, Marat

    updating

    The SN2 mechanism for the reaction of CH3Cl + OH- in aqueous solution was investigated using combined quantum mechanical and molecular mechanics methodology. We analyzed structures of reactant, transition and product states along the reaction pathway. The free energy profile was calculated using the multi-layered representation with the DFT and CCSD(T) level of theory for the quantum-mechanical description of the reactive region. Our results show that the aqueous environment has a significant impact on the reaction process. We find that solvation energy contribution raises the reaction barrier by ~18.9 kcal/mol and the reaction free energy by ~24.5 kcal/mol. The presencemore » of the solvent also induces perturbations in the electronic structure of the solute leading to an increase of 3.5 kcal/mol for the reaction barrier and a decrease of 5.6 kcal/mol for the reaction free energy respectively. Combining the results of two previous calculation results on CHCl3 + OH- and CH2Cl2 + OH- reactions in water, we demonstrate that increase in the chlorination of the methyl group (from CH3Cl to CHCl3) is accompanied by the decrease in the free energy reaction barrier, with the CH3Cl + OH- having the largest barrier among the three reactions.« less

  1. Line Parameters of Ethane (12C _2 H _6 ) at 12 μm with Constrained Multispectrum Fitting

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, C. P.; Smith, M. A. H.; Sams, R. L.; Blake, T. A.; Flaud, J.-M.; Sung, K.; Brown, L. R.; Mantz, A. W.

    updating

    A multispectrum nonlinear least squares technique was applied to simultaneously fit 43 infrared absorption spectra of C_2H_6 between 795 and 850 cm-1. The high resolution (updating cm-1) spectra were recorded with two different Bruker Fourier transform spectrometers at PNNL and JPL to support Earth and planetary atmosphere studies, e.g. Titan's cold stratosphere. Accurate line positions and absolute intensities at room temperature were retrieved for over 1750 transitions of ν_9. N_2- and self-broadened halfwidth coefficients with their temperature dependences were obtained for over 1330 lines using sample temperatures between ˜150 and 298 K. Constraints to intensity ratios, torsional splittings, halfwidth coefficients and their temperature dependence exponents were incorporated in the analysis to determine these parameters for both torsional split components. The variations of the observed halfwidth coefficients and their temperature dependences with respect to J, K quanta are discussed. No pressure-induced shifts were measured or even required to fit the spectra to their noise levels. Present results are compared with previously reported measurements and predictions. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the College of William and Mary, Connecticut College, and NASA Langley Research Center under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  2. The Temperature Dependence of the Partition of CH4 and C 2 H 6 in Structure I Hydrates

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Lu, W.

    updating

    At present, we mainly use hydrocarbon gas and carbon isotope composition to determine the gas source of natural gas hydrate. Judging the type of gas source plays a key role in the evaluation of hydrate reservoirs, but there is still controversy over this approach. Considering the crystal properties of hydrate, the process of aggregation and decomposition of natural gas hydrates may have an important effect on the gas composition. We used CH4 (C1), C2H6 (C2) and their mixture as gas sources to synthesize hydrates from aqueous solution in high-pressure capillary tubes. Gas concentration in hydrates grew at different temperatures was measured with quantitative Raman spectroscopy. The results show that concentrations of gas in pure methane and pure ethane hydrates increase with temperature. The results of the mixture are similar to pure gas below 288.15 K, the concentration of C1 in small cages (SC, 512) slowly increased, but the competitive relationship between methane and ethane in large cages (LC, 51262) become obvious after 288.15 K. From 278.15 K to 294.15 K, the value of C1/C2 decreased from 26.38 to 6.61, gradually closing to the original gas composition of 4. We find that gas hydrates are more likely to gather C1 when they accumulate. The lower the temperature is, the more obvious it will be, and the closer the value of C1/C2 is to the microbial gases.

  3. Infrared Spectroscopic Measurements of the Ethane (C 2 H 6 ) Total Column Abundance Above Mauna Loa, Hawaii: Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; David, S. J.; Blatherwick, R. D.; Murcray, D. G.

    updating

    About 200 i.r. solar spectra recorded at 0.01/ cm resolution on 71 days between November 1991 and July 1993 at the Network for the Detection of Stratospheric Change (NDSC) station at Mauna Loa, Hawaii (latitude 19.53 deg N, longitude 155.58 deg W, elevation 3.459 km) have been analyzed with a nonlinear least-squares spectral fitting technique to study temporal variations in the total column of atmospheric ethane (C2H6) above the site. The results were derived from the analysis of the unresolved nu(sub 7) band (sup P)Q(sub 3) subbranch at 2976.8/cm. A distinct seasonal cycle is observed with a factor of 2 variation, a maximum total column of 1.1 6 x 10(exp 16) mol /sq cm at the end of winter, and a minimum total column of 0.53 x 10(exp 16) mol/sq cm at the end of summer. Our measurements are compared with previous observations and model predictions.

  4. Infrared spectroscopic measurements of the ethane (C 2 H 6 ) total column abundance above Mauna Loa, Hawaii -- seasonal variations

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; David, S. J.; Blatherwick, R. D.; Murcray, D. G.

    updating

    About 200 i.r. solar spectra recorded at 0.01/cm resolution on 71 days between November 1991 and July 1993 at the Network for the Detection of Stratospheric Change (NDSC) station at Mauna Loa, Hawaii (latitude 19.53 deg N, longitude 155.58 deg W, elevation 3.459 km) have been analyzed with a nonlinear least-squares spectral fitting technique to study temporal variations in the total column of atmospheric ethane (C2H6) above the site. The results were derived from the analysis of the unresolved nu(sub 7) band (P)Q(sub 3) subbranch at 2976.8/cm. A distinct seasonal cycle is observed with a factor of 2 variation, a maximum total column of 1.16 x 10(exp 16) mol/sq cm at the end of winter, and a minimum total column of 0.53 x 10(exp 16) mol/sq cm at the end of summer. Our measurements are compared with previous observations and model predictions.

  5. Conversion of CO2 and C 2 H 6 to propanoic acid over a Au-exchanged MCM-22 zeolite.

    PubMed

    Sangthong, Winyoo; Probst, Michael; Limtrakul, Jumras

    updating

    Finding novel catalysts for the direct conversion of CO2 to fuels and chemicals is a primary goal in energy and environmental research. In this work, density functional theory (DFT) is used to study possible reaction mechanisms for the conversion of CO2 and C2H6 to propanoic acid over a gold-exchanged MCM-22 zeolite catalyst. The reaction begins with the activation of ethane to produce a gold ethyl hydride intermediate. Hydrogen transfers to the framework oxygen leads then to gold ethyl adsorbed on the Brønsted-acid site. The energy barriers for these steps of ethane activation are 9.3 and 16.3 kcal mol(-1), respectively. Two mechanisms of propanoic acid formation are investigated. In the first one, the insertion of CO2 into the Au-H bond of the first intermediate yields gold carboxyl ethyl as subsequent intermediate. This is then converted to propanoic acid by forming the relevant C-C bond. The activation energy of the rate-determining step of this pathway is 48.2 kcal mol(-1). In the second mechanism, CO2 interacts with gold ethyl adsorbed on the Brønsted-acid site. Propanoic acid is formed via protonation of CO2 by the Brønsted acid and the simultaneous formation of a bond between CO2 and the ethyl group. The activation energy there is 44.2 kcal mol(-1), favoring this second pathway at least at low temperatures. Gold-exchanged MCM-22 zeolite can therefore, at least in principle, be used as the catalyst for producing propanoic acid from CO2 and ethane. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. CH 3 Cl , CH2Cl2, CHCl3, and CCl4: Infrared spectra, radiative efficiencies, and global warming potentials

    NASA Astrophysics Data System (ADS)

    Wallington, Timothy J.; Pivesso, Bruno Pasquini; Lira, Alane Moura; Anderson, James E.; Nielsen, Claus Jørgen; Andersen, Niels Højmark; Hodnebrog, Øivind

    updating

    Infrared spectra for the title compounds were measured experimentally in 700 Torr of air at 295 K and systematically modeled in B3LYP, M06-2X and MP2 calculations employing various basis sets. Calibrated infrared spectra over the wavenumber range updating cm-1 are reported and combined with literature data to provide spectra for use in experimental studies and radiative transfer calculations. Integrated absorption cross sections are (units of cm-1 molecule-1): CH3Cl, 660-780 cm-1, (3.89±0.19)×10-18; CH2Cl2, 650-800 cm-1, (2.16±0.11)×10-17; CHCl3, 720-810 cm-1, (4.08±0.20)×10-17; and CCl4, 730-825 cm-1, (6.30±0.31)×10-17. CH3Cl, CH2Cl2, CHCl3, and CCl4 have radiative efficiencies of 0.004, 0.028, 0.070, and 0.174 W m-2 ppb-1 and global warming potentials (100 year horizon) of 5, 8, 15, and 1775, respectively. Quantum chemistry calculations generally predict larger band intensities than the experimental values. The best agreement with experiments is obtained in MP2(Full) calculations employing basis sets of at least triple-zeta quality augmented by diffuse functions. The B3LYP functional is found ill-suited for calculating vibrational frequencies and infrared intensities of halocarbons.

  7. Investigation of CO, C 2 H 6 and aerosols over Eastern Canada during BORTAS 2011 using ground-based and satellite-based observations and model simulations

    NASA Astrophysics Data System (ADS)

    Griffin, Debora; Franklin, Jonathan; Parrington, Mark; Whaley, Cynthia; Hopper, Jason; Lesins, Glen; Tereszchuk, Keith; Walker, Kaley A.; Drummond, James R.; Palmer, Paul; Strong, Kimberly; Duck, Thomas J.; Abboud, Ihab; Dan, Lin; O'Neill, Norm; Clerbaux, Cathy; Coheur, Pierre; Bernath, Peter F.; Hyer, Edward; Kliever, Jenny

    updating

    We present the results of total column measurements of CO and C2H6 and aerosol optical depth (AOD) during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS-B) campaign over Eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. They were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and in Toronto, Ontario. Measurements of enhanced fine mode AOD were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this study, we will focus on the identification of the origin and the transport of this smoke plume. We use back-trajectories calculated by the Canadian Meteorological Centre (CMC) as well as FLEXPART forward-trajectories to demonstrate that the enhanced CO, C2H6 and fine mode AOD seen near Halifax and Toronto did originate from forest fires in Northwestern Ontario, that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the emission ratio (ERC2H6-CO) and the emission factor (EFC2H6) of C2H6 (with respect to the CO emission) were estimated from these ground-based observations. The C2H6 emission results from boreal fires in Northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to other geographical regions. The ground-based CO and C2H6 observations were compared with output from the 3-D global chemical transport model GEOS-Chem, using the inventory of the Fire Locating And Monitoring of Burning Emissions (FLAMBE). Good agreement was found for

  8. Investigation of the CH 3 Cl + CN(-) reaction in water: Multilevel quantum mechanics/molecular mechanics study.

    PubMed

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    updating

    The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  9. Investigation of the CH 3 Cl + CN- reaction in water: Multilevel quantum mechanics/molecular mechanics study

    NASA Astrophysics Data System (ADS)

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    updating

    The CH3Cl + CN- reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ˜11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  10. A new, double-inversion mechanism of the F- + CH 3 Cl SN2 reaction in aqueous solution.

    PubMed

    Liu, Peng; Wang, Dunyou; Xu, Yulong

    updating

    Atomic-level, bimolecular nucleophilic substitution reaction mechanisms have been studied mostly in the gas phase, but the gas-phase results cannot be expected to reliably describe condensed-phase chemistry. As a novel, double-inversion mechanism has just been found for the F - + CH 3 Cl S N 2 reaction in the gas phase [Nat. Commun., 2015, 6, 5972], here, using multi-level quantum mechanics methods combined with the molecular mechanics method, we discovered a new, double-inversion mechanism for this reaction in aqueous solution. However, the structures of the stationary points along the reaction path show significant differences from those in the gas phase due to the strong influence of solvent and solute interactions, especially due to the hydrogen bonds formed between the solute and the solvent. More importantly, the relationship between the two double-inversion transition states is not clear in the gas phase, but, here we revealed a novel intermediate complex serving as a "connecting link" between the two transition states of the abstraction-induced inversion and the Walden-inversion mechanisms. A detailed reaction path was constructed to show the atomic-level evolution of this novel double reaction mechanism in aqueous solution. The potentials of mean force were calculated and the obtained Walden-inversion barrier height agrees well with the available experimental value.

  11. High pressure micromechanical force measurements of the effects of surface corrosion and salinity on CH4/C 2 H 6 hydrate particle-surface interactions.

    PubMed

    Wang, Shenglong; Hu, Sijia; Brown, Erika P; Nakatsuka, Matthew A; Zhao, Jiafei; Yang, Mingjun; Song, Yongchen; Koh, Carolyn A

    updating

    In order to investigate the mechanism of gas hydrate deposition and agglomeration in gas dominated flowlines, a high-pressure micromechanical force (MMF) apparatus was applied to directly measure CH 4 /C 2 H 6 hydrate adhesion/cohesion forces under low temperature and high pressure conditions. A CH 4 /C 2 H 6 gas mixture was used as the hydrate former. Adhesion forces between hydrate particles and carbon steel (CS) surfaces were measured, and the effects of corrosion on adhesion forces were analyzed. The influences of NaCl concentration on the cohesion force between CH 4 /C 2 H 6 hydrate particles were also studied for gas-dominated systems. It was observed that there was no measurable adhesion force for pristine (no corrosion) and corroded surfaces, when there was no condensed water or water droplet on these surfaces. With water on the surface (the estimated water amount was around 1.7 μg mm -2 ), a hydrate film growth process was observed during the measurement. CS samples were soaked in NaCl solution to obtain different extents of corrosion on surfaces, and adhesion measurements were performed on both pristine and corroded samples. The adhesion force was found to increase with increasing soak times in 5 wt% NaCl (resulting in more visual corrosion) by up to 500%. For the effect of salinity on cohesion forces, it was found that the presence of NaCl decreased the cohesion force between hydrate particles, and a possible explanation of this phenomenon was given based on the capillary liquid bridge model.

  12. Local- and regional-scale measurements of CH4, δ13CH4, and C 2 H 6 in the Uintah Basin using a mobile stable isotope analyzer

    NASA Astrophysics Data System (ADS)

    Rella, C. W.; Hoffnagle, J.; He, Y.; Tajima, S.

    updating

    In this paper, we present an innovative CH4, δ13CH4, and C2H6 instrument based on cavity ring-down spectroscopy (CRDS). The design and performance of the analyzer is presented in detail. The instrument is capable of precision of less than 1 ‰ on δ13CH4 with 1 in. of averaging and about 0.1 ‰ in an hour. Using this instrument, we present a comprehensive approach to atmospheric methane emissions attribution. Field measurements were performed in the Uintah Basin (Utah, USA) in the winter of 2013, using a mobile lab equipped with the CRDS analyzer, a high-accuracy GPS, a sonic anemometer, and an onboard gas storage and playback system. With a small population and almost no other sources of methane and ethane other than oil and gas extraction activities, the Uintah Basin represents an ideal location to investigate and validate new measurement methods of atmospheric methane and ethane. We present the results of measurements of the individual fugitive emissions from 23 natural gas wells and six oil wells in the region. The δ13CH4 and C2H6 signatures that we observe are consistent with the signatures of the gases found in the wells. Furthermore, regional measurements of the atmospheric CH4, δ13CH4, and C2H6 signatures throughout the basin have been made, using continuous sampling into a 450 m long tube and laboratory reanalysis with the CRDS instrument. These measurements suggest that 85 ± 7 % of the total emissions in the basin are from natural gas production.

  13. Beyond 3 Au from the Sun: the Hypervolatiles CH4, C 2 H 6 , and CO in the Distant Comet C2006 W3 (Christensen)

    NASA Technical Reports Server (NTRS)

    Bonev, Boncho P.; Villanueva, Geronimo L.; Disanti, Michael A.; Boehnhardt, Hermann; Lippi, Manuela; Gibb, Erika L.; Paganini, Lucas; Mumma, Michael J.

    updating

    Comet C/2006 W3 (Christensen) remained outside a heliocentric distance (Rh) of 3.1 au throughout its apparition, but it presented an exceptional opportunity to directly sense a suite of molecules released from its nucleus. The Cryogenic Infrared Echelle Spectrograph at ESO-VLT detected infrared emissions from the three hypervolatiles (CO, CH4, and C2H6) that have the lowest sublimation temperatures among species that are commonly studied in comets by remote sensing. Even at Rh 3.25 au, the production rate of each molecule exceeded those measured for the same species in a number of other comets, although these comets were observed much closer to the Sun. Detections of CO at Rh = 3.25, 4.03, and 4.73 au constrained its post-perihelion decrease in production rate, which most likely dominated the outgassing. At 3.25 au, our measured abundances scaled as CO/CH4/C2H6 approx. = 100/4.4/2.1. The C2H6/CH4 ratio falls within the range of previously studied comets at Rh

  14. Rate Coefficients of C2H with C2H4, C 2 H 6 , and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    updating

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  15. Production and optical constraints of ice tholin from charged particle irradiation of (1:6) C 2 H 6 /H2O at 77 K

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Thompson, W. R.; Cheng, L.; Chyba, C.; Sagan, C.; Arakawa, E. T.; Meisse, C.; Tuminello, P. S.

    updating

    Fifty separate irradiations of a 6:1 mixture of H2O/C2H6 ice conducted over a 5-month period have yielded sufficient tholin for the determination of its physical constants in the 0.06 to 40 micron range. While the imaginary part of the refractive index k was obtained by transmission measurements on thin-film samples and Kramers-Kronig analysis (KKA), the real part of the refractive index was obtained by KKA and ellipsometry; these data may prove useful in cometary and outer solar system spectrometric interpretation.

  16. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2 H 6 , PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    updating

    We report observation and analysis of a high-resolution updating μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At updating μm the major absorber is tropospheric PH 3. The cloud level determined here and at updating is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the updating μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  17. The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C 2 H 6

    NASA Astrophysics Data System (ADS)

    Kille, Natalie; Baidar, Sunil; Handley, Philip; Ortega, Ivan; Sinreich, Roman; Cooper, Owen R.; Hase, Frank; Hannigan, James W.; Pfister, Gabriele; Volkamer, Rainer

    updating

    We describe the University of Colorado mobile Solar Occultation Flux instrument (CU mobile SOF). The instrument consists of a digital mobile solar tracker that is coupled to a Fourier transform spectrometer (FTS) of 0.5 cm-1 resolution and a UV-visible spectrometer (UV-vis) of 0.55 nm resolution. The instrument is used to simultaneously measure the absorption of ammonia (NH3), ethane (C2H6) and nitrogen dioxide (NO2) along the direct solar beam from a moving laboratory. These direct-sun observations provide high photon flux and enable measurements of vertical column densities (VCDs) with geometric air mass factors, high temporal resolution of 2 s and spatial resolution of 5-19 m. It is shown that the instrument line shape (ILS) of the FTS is independent of the azimuth and elevation angle pointing of the solar tracker. Further, collocated measurements next to a high-resolution FTS at the National Center for Atmospheric Research (HR-NCAR-FTS) show that the CU mobile SOF measurements of NH3 and C2H6 are precise and accurate; the VCD error at high signal to noise ratio is 2-7 %. During the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) from 21 July to 3 September 2014 in Colorado, the CU mobile SOF instrument measured median (minimum, maximum) VCDs of updating, 45) × 1016 molecules cm-2 NH3, updating, 2.23) × 1016 molecules cm-2 NO2 and updating, 7.7) × 1016 molecules cm-2 C2H6. All gases were detected in larger 95 % of the spectra recorded in urban, semi-polluted rural and remote rural areas of the Colorado Front Range. We calculate structure functions based on VCDs, which describe the variability of a gas column over distance, and find the largest variability for NH3. The structure functions suggest that currently available satellites resolve about 10 % of the observed NH3 and NO2 VCD variability in the study area. We further quantify the trace gas emission fluxes of NH3 and C2H6 and production rates of NO2 from concentrated animal feeding

  18. Direct ab initio dynamics study of the reaction of C 2(A 3Π u) radical with C 2 H 6

    NASA Astrophysics Data System (ADS)

    Li, Na; Huo, Rui-Ping; Zhang, Xiang; Huang, Xu-Ri; Li, Ji-Lai; Sun, Chia-Chung

    updating

    The reaction of C 2 (A 3Π u) with C 2H 6 has been investigated at the BMC-CCSD//BB1K/6-311+G(2d, 2p) level. The classical barrier height for H-abstraction reaction is calculated to be 3.32 kcal/mol and the electron transfer behavior is also analyzed in detail. The rate constants are calculated by TST, CVT, and CVT/SCT over a wide temperature range 50-3000 K. The results indicate: (1) variational effect is small and nonclassical reflection effect is important to the H abstraction in high temperature region; and (2) variational effect is negligible and tunneling effect cooperating with the nonclassical reflection effect makes the rate constant temperature independence in low-temperature range. The CVT/SCT rate constants are in excellent agreement with experimental values.

  19. Infrared Measurements of Atmospheric Ethane (C 2 H 6 ) From Aircraft and Ground-Based Solar Absorption Spectra in the 3000/ cm Region

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Goldman, A.; Rinsland, C. P.; Harvey, G. A.; Devi, V. Malathy; Stokes, G. M.

    updating

    A number or prominent Q-branches or the upsilon(sub 7) band or C2H6 have been identified near 3000/ cm in aircraft and ground-based infrared solar absorption spectra. The aircraft spectra provide the column amount above 12 km at various altitudes. The column amount is strongly correlated with tropopause height and can be described by a constant mixing ratio of 0.46 ppbv in the upper troposphere and a mixing ratio scale height of 3.9 km above the tropopause. The, ground-based spectra yield a column of 9.0 x 10(exp 15) molecules/sq cm above 2.1 km; combining these results implies a tropospheric mixing ratio of approximately 0.63 ppbv.

  20. A theoretical investigation on optimal structures of ethane clusters (C 2 H 6 )n with n ≤ 25 and their building-up principle.

    PubMed

    Takeuchi, Hiroshi

    updating

    Geometry optimization of ethane clusters (C(2)H(6))(n) in the range of n ≤ 25 is carried out with a Morse potential. A heuristic method based on perturbations of geometries is used to locate global minima of the clusters. The following perturbations are carried out: (1) the molecule or group with the highest energy is moved to the interior of a cluster, (2) it is moved to stable positions on the surface of a cluster, and (3) orientations of one and two molecules are randomly modified. The geometry obtained after each perturbation is optimized by a quasi-Newton method. The global minimum of the dimer is consistent with that previously reported. The putative global minima of the clusters with 3 ≤ n ≤ 25 are first proposed and their building-up principle is discussed. Copyright © 2010 Wiley Periodicals, Inc.

  1. Infrared measurements of atmospheric ethane (C 2 H 6 ) from aircraft and ground-based solar absorption spectra in the 3000/cm region

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Goldman, A.; Rinsland, C. P.; Harvey, G. A.; Devi, V. M.; Stokes, G. M.

    updating

    A number of prominent Q-branches of the nu-7 band of C2H6 have been identified near 3000/cm in aircraft and ground-based infrared solar absorption spectra. The aircraft spectra provide the column amount above 12 km at various altitudes. The column amount is strongly correlated with tropopause height and can be described by a constant mixing ratio of 0.46 ppbv in the upper troposphere and a mixing ratio scale height of 3.9 km above the tropopause. The ground-based spectra yield a column of 9.0 x 10 to the 15th molecules/sq cm above 2.1 km; combining these results implies a tropospheric mixing ratio of approximately 0.63 ppbv.

  2. Ab initio rate constants from hyperspherical quantum scattering: Application to H+C 2 H 6 and H+CH3OH

    NASA Astrophysics Data System (ADS)

    Kerkeni, Boutheïna; Clary, David C.

    updating

    The dynamics and kinetics of the abstraction reactions of H atoms with ethane and methanol have been studied using a quantum mechanical procedure. Bonds being broken and formed are treated with explicit hyperspherical quantum dynamics. The ab initio potential energy surfaces for these reactions have been developed from a minimal number of grid points (average of 48 points) and are given by analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimized using the second order perturbation theory method with a correlation consistent polarized valence triple zeta basis set. Single point energies are calculated on the optimized geometries with the coupled cluster theory and the same basis set. The reaction of H with C2H6 is endothermic by 1.5 kcal/mol and has a vibrationally adiabatic barrier of 12 kcal/mol. The reaction of H with CH3OH presents two reactive channels: the methoxy and the hydroxymethyl channels. The former is endothermic by 0.24 kcal/mol and has a vibrationally adiabatic barrier of 13.29 kcal/mol, the latter reaction is exothermic by 7.87 kcal/mol and has a vibrationally adiabatic barrier of 8.56 kcal/mol. We report state-to-state and state-selected cross sections together with state-to-state rate constants for the title reactions. Thermal rate constants for these reactions exhibit large quantum tunneling effects when compared to conventional transition state theory results. For H+CH3OH, it is found that the CH2OH product is the dominant channel, and that the CH3O channel contributes just 2% at 500 K. For both reactions, rate constants are in good agreement with some measurements.

  3. Estimates of methane emissions from India using CH4-CO-C 2 H 6 relationships from CARIBIC observations in monsoon convective outflow

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Rauthe-Schöch, A.; Schuck, T. J.; van Velthoven, P. F.; Slemr, F.; Brenninkmeijer, C. A.

    updating

    A large fraction of methane sources are anthropogenic, and include fossil fuel use, biomass/biofuel burning, agriculture and waste treatment. Recently, much attention regarding emissions of greenhouse gases has focused on large, developing nations, as their emissions are expected to rise rapidly over the coming decades. As the second most populous country in the world, and one of the fastest growing economies, India has been of particular interest. Arguably the most important feature of meteorology in India is the Asian summer monsoon. During the monsoon period there exists persistent deep convection over Southern Asia, and the composition of convected air masses is strongly influenced by emissions from India. This ultimately results in a well-mixed air parcel containing air from India being transported to the upper troposphere. Over the course of the 2008 monsoon period the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) passenger aircraft conducted monthly measurement flights which probed this outflow. Data collected during these flights provides a unique opportunity to examine sources of atmospheric species in India. Here we use measurements of methane (CH4), carbon monoxide (CO) and ethane (C2H6) from whole air samples collected during CARIBIC flights to estimate emissions of methane and to quantify those emissions related to flooding during the monsoon. Methane data from the monsoon period show enhancements inside the monsoon plume, which increase as the monsoon progresses. Using emission data for CO and ΔCH4/ΔCO derived from CARIBIC measurements, we estimate total methane emissions to be ~40 Tg yr-1. Relationships of methane to ethane, which shares the bulk of its sources with methane but lacks a biological component, are further used to estimate the fraction of “extra” emissions from biological activity related to increased monsoon rains. This additional methane is a considerable fraction of

  4. Quantum Dynamics Study of the Potential Energy Minima Effect on Energy Efficiency for the F- + CH 3 Cl → FCH3 + Cl- Reaction.

    PubMed

    Li, Yida; Wang, Yuping; Wang, Dunyou

    updating

    The Polanyi rules on the energy efficiency on reactivity are summarized solely from the locations of barriers on the potential energy surfaces. Here, our quantum dynamics study for the F - + CH 3 Cl → FCH 3 + Cl - reaction shows that the two potential energy minima in the entrance channel on the potential energy surface play an essential role in energy efficiency on reactivity. The reactivity of this reaction is dominated by the low collision energies where two distinctive reaction mechanisms involve the two minima in the entrance channel. Overall, the Cl-CH 3 stretching motion and C-H 3 umbrella motion both are more efficient than the translational motion in promoting this reaction. Although this reaction has a negative energy barrier, our study shows that it is the minima in the entrance channel, together with the energy barrier relative to these minima, that determine the energy efficacy on reactivity.

  5. Dynamic exit-channel pathways of the microsolvated HOO-(H2O) + CH 3 Cl SN2 reaction: Reaction mechanisms at the atomic level from direct chemical dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yu, Feng

    updating

    Microsolvated bimolecular nucleophilic substitution (SN2) reaction of monohydrated hydrogen peroxide anion [HOO-(H2O)] with methyl chloride (CH3Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl-:Cl-(H2O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, updating)]. Compared with the HOO- + CH3Cl SN2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO-(H2O) + CH3Cl SN2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the SN2 reactions of HOO- + CH3Cl and HOO-(H2O) + CH3Cl.

  6. Dynamic exit-channel pathways of the microsolvated HOO-(H2O) + CH 3 Cl SN2 reaction: Reaction mechanisms at the atomic level from direct chemical dynamics simulations.

    PubMed

    Yu, Feng

    updating

    Microsolvated bimolecular nucleophilic substitution (S N 2) reaction of monohydrated hydrogen peroxide anion [HOO - (H 2 O)] with methyl chloride (CH 3 Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl - :Cl - (H 2 O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, updating)]. Compared with the HOO - + CH 3 Cl S N 2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO - (H 2 O) + CH 3 Cl S N 2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the S N 2 reactions of HOO - + CH 3 Cl and HOO - (H 2 O) + CH 3 Cl.

  7. Investigation of CO, C 2 H 6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations, and model simulations

    NASA Astrophysics Data System (ADS)

    Griffin, D.; Walker, K. A.; Franklin, J. E.; Parrington, M.; Whaley, C.; Hopper, J.; Drummond, J. R.; Palmer, P. I.; Strong, K.; Duck, T. J.; Abboud, I.; Bernath, P. F.; Clerbaux, C.; Coheur, P.-F.; Curry, K. R.; Dan, L.; Hyer, E.; Kliever, J.; Lesins, G.; Maurice, M.; Saha, A.; Tereszchuk, K.; Weaver, D.

    updating

    We present the results of total column measurements of CO, C2H6 and fine mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over Eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back-trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward-trajectories to demonstrate that the enhanced CO, C2H6 and fine mode AOD seen near Halifax and Toronto originated from forest fires in Northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the emission ratio (ERC2H6/CO) and the emission factor (EFC2H6) of C2H6 (with respect to the CO emission) were estimated from these ground-based observations. These C2H6 emission results from boreal fires in Northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Monitoring of Burning Emissions (FLAMBE) inventory

  8. Investigation of CO, C 2 H 6 and aerosols in a boreal fire plume over eastern Canada during BORTAS 2011 using ground- and satellite-based observations and model simulations

    NASA Astrophysics Data System (ADS)

    Griffin, D.; Walker, K. A.; Franklin, J. E.; Parrington, M.; Whaley, C.; Hopper, J.; Drummond, J. R.; Palmer, P. I.; Strong, K.; Duck, T. J.; Abboud, I.; Bernath, P. F.; Clerbaux, C.; Coheur, P.-F.; Curry, K. R.; Dan, L.; Hyer, E.; Kliever, J.; Lesins, G.; Maurice, M.; Saha, A.; Tereszchuk, K.; Weaver, D.

    updating

    We present the results of total column measurements of CO, C2H6 and fine-mode aerosol optical depth (AOD) during the "Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS-B) campaign over eastern Canada. Ground-based observations, using Fourier transform spectrometers (FTSs) and sun photometers, were carried out in July and August 2011. These measurements were taken in Halifax, Nova Scotia, which is an ideal location to monitor the outflow of boreal fires from North America, and also in Toronto, Ontario. Measurements of fine-mode AOD enhancements were highly correlated with enhancements in coincident trace gas (CO and C2H6) observations between 19 and 21 July 2011, which is typical for a smoke plume event. In this paper, we focus on the identification of the origin and the transport of this smoke plume. We use back trajectories calculated by the Canadian Meteorological Centre as well as FLEXPART forward trajectories to demonstrate that the enhanced CO, C2H6 and fine-mode AOD seen near Halifax and Toronto originated from forest fires in northwestern Ontario that occurred between 17 and 19 July 2011. In addition, total column measurements of CO from the satellite-borne Infrared Atmospheric Sounding Interferometer (IASI) have been used to trace the smoke plume and to confirm the origin of the CO enhancement. Furthermore, the enhancement ratio - that is, in this case equivalent to the emission ratio (ERC2H6/CO) - was estimated from these ground-based observations. These C2H6 emission results from boreal fires in northwestern Ontario agree well with C2H6 emission measurements from other boreal regions, and are relatively high compared to fires from other geographical regions. The ground-based CO and C2H6 observations were compared with outputs from the 3-D global chemical transport model GEOS-Chem, using the Fire Locating And Modeling of Burning Emissions (FLAMBE) inventory. Agreement within the

  9. Concentrations of ethane (C 2 H 6 ) in the lower stratosphere and upper troposphere and acetylene (C2H2) in the upper troposphere deduced from Atmospheric Trace Molecule Spectroscopy/Spacelab 3 spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Russell, J. M., III; Zander, R.; Farmer, C. B.; Norton, R. H.

    updating

    This paper reports the results of the spectroscopic analysis of C2H6 and C2H2 absorption spectra obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument flown on the Shuttle as part of the Spacelab 3 mission. The spectra were recorded during sunset occultations occurring between 25 deg N and 31 deg N latitudes, yielding volume-mixing ratio profiles of C2H6 in the lower stratosphere and the upper troposphere, and an upper tropospheric profile of C2H2. These results compare well with previous in situ and remote sounding data obtained at similar latitudes and with model calculations. The results demonstrate the feasibility of the ATMOS instrument to sound the lower atmosphere from space.

  10. Prediction of the PVTx and VLE properties of natural gases with a general Helmholtz equation of state. Part I: Application to the CH4-C 2 H 6 -C3H8-CO2-N2 system

    NASA Astrophysics Data System (ADS)

    Mao, Shide; Lü, Mengxin; Shi, Zeming

    updating

    A general equation of state (EOS) explicit in Helmholtz free energy has been developed to predict the pressure-volume-temperature-composition (PVTx) and vapor-liquid equilibrium (VLE) properties of the CH4-C2H6-C3H8-CO2-N2 fluid mixtures (main components of natural gases). This EOS, which is a function of temperature, density and composition, with four mixing parameters used, is based on the improved EOS of Sun and Ely (2004) for the pure components (CH4, C2H6, C3H8, CO2 and N2) and contains a simple generalized departure function presented by Lemmon and Jacobsen (1999). Comparison with the experimental data available indicates that the EOS can calculate the PVTx and VLE properties of the CH4-C2H6-C3H8-CO2-N2 fluid mixtures within or close to experimental uncertainties up to 623 K and 1000 bar within full range of composition. Isochores of the CH4-C2H6-C3H8-CO2-N2 system can be directly calculated from this EOS to interpret the corresponding microthermometric and Raman analysis data of fluid inclusions. The general EOS can calculate other thermodynamic properties if the ideal Helmholtz free energy of fluids is combined, and can also be extended to the multi-component natural gases including the secondary alkanes (carbon number above three) and none-alkane components such as H2S, SO2, O2, CO, Ar and H2O. This part of work will be finished in the near future.

  11. Study on the electronic structure of Al12N12 and Al12P12 fullerene-like nano-clusters upon adsorption of CH3F and CH 3 Cl

    NASA Astrophysics Data System (ADS)

    Shokuhi Rad, A.; Zareyee, D.; Pouralijan Foukolaei, V.; Kamyab Moghadas, B.; Peyravi, M.

    updating

    We study the interaction of two mono-halomethanes (CH3F and CH3Cl) on Al12N12 and Al12P12 fullerene-like nano-clusters based on density functional theory (DFT). We search on fully optimised adsorbed systems by theoretical investigation considering binding energies, total density of states, natural bond orbital (NBO) charges, and molecular electrostatic potential. We found that the direction of electron transfer is from halomethane to nano-cluster for all systems, indicating p-type semiconductor property of the mentioned nano-clusters. The interaction energy of halomethanes on nano-clusters is evaluated with dispersion corrected (wB97XD) and non-corrected (B3LYP) methods in order to estimate the dispersion effects. The binding energies are found in order of Al12N12-CH3F > Al12N12-CH3Cl > Al12P12-CH3F > Al12P12-CH3Cl with the values of -102.7, -83.7, -64.2, and -48.9 kJ mol-1 based on wB97XD, respectively. We found significant changes in the location of HOMO as well as LUMO of nano-clusters upon adsorption of the above-mentioned molecules. As a result, we suggest the suitability of Al12N12 nano-cluster as a strong adsorbent for practical applications.

  12. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C 2 H 6 , CH3D, CH4, and the Saturnian D/H isotopic ratio

    NASA Technical Reports Server (NTRS)

    Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.; Hanel, R.

    updating

    The vertical distributions and mixing ratios of minor constituents in the northern hemisphere of Saturn are investigated. Results are obtained for NH3, PH3, C2H2, C2H6, CH3D, and CH4; the D/H ratio is obtained from the CH4 and CH3D abundances. The NH3 mixing ratio in the upper atmosphere is found to be compatible with the saturated partial pressure. The inferred PH3/H2 ratio of 1.4 + or - 0.8 x 10 to the -6th is higher than the value derived from the solar P/H ratio. The stratospheric C2H2/H2 and C2H6/H2 ratios are, respectively, 2.1 + or - 1.4 x 10 to the -7th and 3.0 + or - 1.1 x 10 to the -6th; the latter decreases sharply below the 20-50 mbar level. The results for CH3D/H2 and CH4/H2 imply an enrichment of Saturn's upper atmosphere in carbon by a factor of at least three over the solar abundance. The interpretation of two NH3 lines in the five-micron window suggests a NH3/H2 ratio at the two bar level below the solar value.

  13. Total reaction cross sections of electronic state-specified transition metal cations: V + +C 2 H 6 , C3H8, and C2H4 at 0.2 eV

    NASA Astrophysics Data System (ADS)

    Sanders, Lary; Hanton, Scott D.; Weisshaar, James C.

    updating

    We describe a crossed beam experiment which measures total cross sections for reaction of electronic state-specified V+ with small hydrocarbons at well-defined collision energy E=0.2 eV. The V+ state distribution created at each ionizing wavelength is directly measured by angle-integrated photoelectron spectroscopy (preceding paper). Reactant and product ions are collected and analyzed by pulsed time-of-flight mass spectrometry following a reaction time of 6 μs. Tests of the performance of the apparatus are described in detail. Our experiment defines the reactant V+ electronic state distribution and the collision energy much more precisely than previous work. For all three hydrocarbons C2H6, C3H8, and C2H4, H2 elimination products dominate at 0.2 eV. We observe a dramatic dependence of cross section on the V+ electronic term. The second excited term 3d34s(3F) is more reactive than either lower energy quintet term 3d4(5D) or 3d34s(5F) by a factor of ≥270, 80, and ≥6 for the C2H6, C3H8, and C2H4 reactions, respectively. The 3d34s(3F) reaction cross sections at 0.2 eV are 20±11 Å2, 37±19 Å2, and 2.7±1.6 Å2, respectively, compared with Langevin cross sections of ˜80 Å2. For the C2H6 and C3H8 reactions, cross sections are independent of initial spin-orbit level J within the 3F term to the limits of our accuracy. Comparison with earlier work by Armentrout and co-workers shows that electronic excitation to d3s(3F) is far more effective at promoting H2 elimination than addition of the same total kinetic energy to reactants. Electron spin is clearly a key determinant of V+ reactivity with small hydrocarbons. We suggest that triplet V+ reacts much more efficiently than quintet V+ because of its ability to conserve total electron spin along paths to insertion in a C-H bond of the hydrocarbon.

  14. Covariance mapping of two-photon double core hole states in C 2 H 2 and C 2 H 6 produced by an x-ray free electron laser

    DOE PAGES

    Mucke, M; Zhaunerchyk, V; Frasinski, L J; ...

    updating

    Few-photon ionization and relaxation processes in acetylene (C 2H 2) and ethane (C 2H 6) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the samemore » FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods.« less

  15. Separating methane emissions from agricultural sources and natural gas: direct measurements of excess columns of CH4, C 2 H 6 and NH3 in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kille, N.; Chiu, R.; Frey, M.; Hase, F.; Kumar Sha, M.; Blumenstock, T.; Hannigan, J. W.; Volkamer, R. M.

    updating

    Methane (CH4) is a major greenhouse gas emitted from biogenic, thermogenic, and pyrogenic sources. Here we demonstrate a novel approach to separate sources of CH4 emissions based on a network of small portable sensors performing column measurements in the Northern Colorado Front Range (NCFR). In the study area CH4 is emitted from biogenic sources such as concentrated animal feeding operations (CAFOs) and natural gas production and storage. In March 2015 we deployed a network of five Fourier Transform Spectrometers (FTS) to characterize the regional scale methane dome in Colorado's Denver-Julesburg Basin based on excess vertical column measurements (the column enhancement inside the dome over background). Three EM27sun FTS measured CH4, oxygen (O2) and water vapor (H2O) columns at Eaton, CO (inside the dome) and at two boundary sites; the CU mobile SOF (Solar Occultation Flux) measured ethane (C2H6), ammonia (NH3), and H2O at Eaton, CO. The column averaged dry air mole fractions XCH4, XC2H6, and XNH3 were determined using O2 columns for air mass factor normalization, and background column was subtracted to derive excess vertical columns of DXCH4, DXC2H6, DXNH3 at Eaton, CO. Eaton is located both near CAFOs and at the northern edge of oil and natural gas production wells. Our approach for source apportioning methane employs a linear regression analysis that explains DXCH4 in terms of DXC2H6 as tracer for natural gas sources, and DXNH3 as tracer for CAFO emissions. The results of the source apportionment are compared with literature values of the NH3/CH4 and C2H6/CH4 ratio to evaluate the method of excess columns, which is independent of boundary layer height.

  16. On the Formation of the C 2 H 6 O Isomers Ethanol (C2H5OH) and Dimethyl Ether (CH3OCH3) in Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Bergantini, Alexandre; Maksyutenko, Pavlo; Kaiser, Ralf I.

    updating

    The structural isomers ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3) were detected in several low-, intermediate-, and high-mass star-forming regions, including Sgr B2, Orion, and W33A, with the relative abundance ratios of ethanol/dimethyl ether varying from about 0.03 to 3.4. Until now, no experimental data regarding the formation mechanisms and branching ratios of these two species in laboratory simulation experiments could be provided. Here, we exploit tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) to detect and analyze the production of complex organic molecules (COMs) resulting from the exposure of water/methane (H2O/CH4) ices to energetic electrons. The main goal is to understand the formation mechanisms in star-forming regions of two C2H6O isomers: ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3). The results show that the experimental branching ratios favor the synthesis of ethanol versus dimethyl ether (31 ± 11:1). This finding diverges from the abundances observed toward most star-forming regions, suggesting that production routes on interstellar grains to form dimethyl ether might be missing; alternatively, ethanol can be overproduced in the present simulation experiments, such as via radical-radical recombination pathways involving ethyl and hydroxyl radicals. Finally, the PI-ReTOF-MS data suggest the formation of methylacetylene (C3H4), ketene (CH2CO), propene (C3H6), vinyl alcohol (CH2CHOH), acetaldehyde (CH3CHO), and methyl hydroperoxide (CH3OOH), in addition to ethane (C2H6), methanol (CH3OH), and CO2 detected from infrared spectroscopy. The yield of all the confirmed species is also determined.

  17. Hybrid quantum chemical studies for the methanol formation reaction assisted by the proton transfer mechanism in supercritical water: CH 3 Cl +nH2O-->CH3OH+HCl+(n-1)H2O

    NASA Astrophysics Data System (ADS)

    Hori, T.; Takahashi, H.; Nitta, T.

    updating

    The proton transfer along the chain of hydrogen bonds is involved in many chemical reactions in aqueous solution and known to play a decisive role. We have performed the hybrid quantum chemical simulations for the methanol formation reaction catalyzed by the proton transfer mechanism [CH3Cl+nH2O→CH3OH+HCl+(n-1)H2O, n=3] in supercritical water (SCW) to investigate the role of water solvent on the reaction. In the simulation, the electronic state of the chemically active solutes (CH3Cl+3H2O) has been determined quantum mechanically, while the static water solvent has been represented by a classical model. The activation free energy for the water-catalytic reaction in SCW has been found to be 9.6 kcal/mol, which is much lower than that in the gas phase (29.2 kcal/mol). The fractional charge analysis has revealed that the notable charge separation in the solute complex takes place at the transition state (TS) and the resulting huge dipole gives rise to the considerable stabilization of the TS as compared to the reactant. It has been shown that the reaction assisted by the proton transfer mechanism is energetically much favored than the ionic SN2 reaction (CH3Cl+OH-→CH3OH+Cl-, 18.8 kcal/mol). The present calculations suggest that the proton migrations through the chain of hydrogen bonds can be regarded as a probable candidate responsible for the anomalous reactivities observed in SCW.

  18. Isotropic C6, C8 and C10 interaction coefficients for CH 4, C 2 H 6 , C 3H 8, n-C 4H 10 and cyclo- C3H 6

    NASA Astrophysics Data System (ADS)

    Thomas, Gerald F.; Mulder, Fred; Meath, William J.

    updating

    The non-empirical generalized Kirkwood, Unsöld, and the single-Δ Unsöld methods (with double-zeta quality SCF wave-functions) are used to calculate isotropic dispersion (and induction) energy coefficients C2n, with n ⩽ 5, for interactions involving ground state CH 4, C 2H 6, C 3H 8, n-C 4H 10 and cyclo-C 3H 6. Results are also given for the related multipole polarizabilities α l, multipole sums S1/(0) and S1(-1) which are evaluated using sum rules, and the permanent multipole moments. for l = 1 (dipole) to l = 3 (octupole). Estimates of the reliability of the non-empirical methods, for the type of molecules considered, are obtained by a comparison with accurate literature values of α 1S1(-1) and C6. This, and the asymptotic properties of the multipolar expansion of the dispersion energy, the use to discuss recommended representation for the isotropic long range interaction energies through R-10 where R is the intermolecular separation.

  19. ONIOM Study of Chemical Reactions in Microsolvation Clusters: (H2O)(n)CH 3 Cl +OH-(H2O)(m) (n+m = 1 and 2)

    SciTech Connect

    Re, Suyong; Morokuma, Keiji

    updating

    The reliability of the two-layered ONIOM (our own N-layered molecular orbital + molecular mechanics) method was examined for the investigation of the SN2 reaction pathway (reactants, reactant complexes, transition states, product complexes, and products) between CH3Cl and an OH- ion in microsolvation clusters with one or two water molecules. Only the solute part, CH3Cl and OH-, was treated at a high level of molecular orbital (MO) theory, and all solvent water molecules were treated at a low MO level. The ONIOM calculation at the MP2 (Moller-Plesset second order perturbation)/aug-cc-pVDZ (augmented correlation-consistent polarized valence double-zeta basis set) level of theory asmore » the high level coupled with the B3LYP (Becke 3 parameter-Lee-Yag-Parr)/6-31+G(d) as the low level was found to reasonably reproduce the "target"geometries at the MP2/aug-cc-pVDZ level of theory. The energetics can be further improved to an average absolute error of

  20. Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of rate constants and kinetic isotope effects for the H + C 2 H 6 reaction.

    PubMed

    Chakraborty, Arindam; Zhao, Yan; Lin, Hai; Truhlar, Donald G

    updating

    This article presents a multifaceted study of the reaction H+C(2)H(6)-->H(2)+C(2)H(5) and three of its deuterium-substituted isotopologs. First we present high-level electronic structure calculations by the W1, G3SX, MCG3-MPWB, CBS-APNO, and MC-QCISD/3 methods that lead to a best estimate of the barrier height of 11.8+/-0.5 kcal/mol. Then we obtain a specific reaction parameter for the MPW density functional in order that it reproduces the best estimate of the barrier height; this yields the MPW54 functional. The MPW54 functional, as well as the MPW60 functional that was previously parametrized for the H+CH(4) reaction, is used with canonical variational theory with small-curvature tunneling to calculate the rate constants for all four ethane reactions from 200 to 2000 K. The final MPW54 calculations are based on curvilinear-coordinate generalized-normal-mode analysis along the reaction path, and they include scaled frequencies and an anharmonic C-C bond torsion. They agree with experiment within 31% for 467-826 K except for a 38% deviation at 748 K; the results for the isotopologs are predictions since these rate constants have never been measured. The kinetic isotope effects (KIEs) are analyzed to reveal the contributions from subsets of vibrational partition functions and from tunneling, which conspire to yield a nonmonotonic temperature dependence for one of the KIEs. The stationary points and reaction-path potential of the MPW54 potential-energy surface are then used to parametrize a new kind of analytical potential-energy surface that combines a semiempirical valence bond formalism for the reactive part of the molecule with a standard molecular mechanics force field for the rest; this may be considered to be either an extension of molecular mechanics to treat a reactive potential-energy surface or a new kind of combined quantum-mechanical/molecular mechanical (QM/MM) method in which the QM part is semiempirical valence bond theory; that is, the new potential

  1. Microsolvation effects on the reactivity of oxy-nucleophiles: the case of gas-phase SN2 reactions of YO-(CH3OH) n=1,2 towards CH 3 Cl .

    PubMed

    Yun-Yun, Liu; Fang-Zhou, Qiu; Jun, Zhu; Yi, Ren; Kai-Chung, Lau

    updating

    The modified G4(MP2) method was applied to explore microsolvation effects on the reactivity of four solvated normal oxy-nucleophiles YO - (CH 3 OH) n=1,2 (Y = CH 3 , C 2 H 5 , FC 2 H 4 , ClC 2 H 4 ), and five α-oxy-nucleophiles YO - (CH 3 OH) n=1,2 (Y = HO, CH 3 O, F, Cl, Br), in gas-phase S N 2 reactions towards the substrate CH 3 Cl. Based on a Brønsted-type plot, our calculations reveal that the overall activation barriers of five microsolvated α-oxy-nucleophiles are obviously smaller than the prediction from the correlation line constructed by four normal microsolvated ones to different degrees, and clearly demonstrate the existence of an α-effect in the presence of one or two methanol molecule(s). Moreover, it was found that the α-effect of the mono-methanol microsolvated α-nucleophile is stronger than that of the monohydrated α-nucleophile. However, the α-effect of YO - (CH 3 OH) 2 becomes weaker for Y = HO and CH 3 O, whereas it becomes stronger for Y = F, Cl, Br than that of YO - (H 2 O) 2 , which can be explained by analyses of the activation strain model in the two cases. It was also found that the rationale about the low ionization energy of α-nucleophile inducing the α-effect was not widely significant. Graphical abstract Variation of alpha-effect in the gas-phase S N 2 reaction with the microsolvation.

  2. Biomolecules from HCN

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Ryan, T. J.; Lobo, A. P.; Donner, D. B.

    updating

    It has been suggested by Sanchez et al. (1967) that HCN might have been one of the more important precursors of biological molecules on the primitive earth. Studies were conducted to determine the mechanisms involved in HCN oligomerizations in dilute aqueous solutions and to identify the compounds which are produced in these oligomerization mixtures. Indirect evidence for the formation of cyanate was obtained along with direct evidence for the formation of citrulline, aspartic acid, and orotic acid.

  3. The Puzzle of HCN in Comets: Is it both a Product and a Primary Species?

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Bonev, Boncho P.; Charnley, Steven B.; Cordiner, Martin A.; DiSanti, Michael A.; Gibb, Erika L.; Magee-Sauer, Karen; Paganini, Lucas; Villanueva, Geronimo L.

    updating

    Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: 1. HCN is often used as a proxy for water when the dominant species (H2O) is not available for simultaneous measurement, as at radio wavelengths. 2. HCN is one of the few volatile carriers of nitrogen accessible to remote sensing. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. 3. The stereoisomer HNC is now confirmed as a product species. Could reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? 4. The production rate for CN greatly exceeds that of HCN in some comets, demonstrating the presence of another (more important) precursor of CN. Several puzzling lines of evidence raise issues about the origin of HCN: a. The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets - in others the infrared rate exceeds the radio rate substantially. b. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). c. The nucleus-centered rotational temperatures measured for H2O and other species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly smaller. d. In comet ISON, ALMA maps of HCN and the dust continuum show a slight displacement 80 km) in the centroids. We will

  4. Reinvestigation of the elementary chemical kinetics of the reaction C2H5(•) + HBr (HI) → C 2 H 6 + Br(•) (I(•)) in the range 293-623 K and its implication on the thermochemical parameters of C2H5(•) free radical.

    PubMed

    Leplat, N; Wokaun, A; Rossi, M J

    updating

    A reinvestigation of the absolute rate constants of the metathesis reactions C2H5• + HBr → C2H6 + Br• (R1) and C2H5• + HI → C2H6 + I• (R2) has been performed and led to the following Arrhenius expressions: k1 = 3.69(±0.95) × 10–11 exp(−10.62(±0.66)/RT), k2 = 1.20(±0.38) × 10–11 exp(−7.12(±1.059)/RT) in the temperature range 293–623 K (A/cm3 molecule–1 s–1, Ea/kJ mol–1). The study has been performed using a Knudsen reactor coupled to single-photon (VUV) photoionization mass spectrometer (SPIMS). Hydrocarbon free radicals have been generated externally before admission into the Knudsen reactor according to two different chemical schemes, enabling the generation of thermalized C2H5• free radicals. A minor correction to k1 and k2 for the wall loss of C2H5• (kw) has been applied throughout the temperature range. The obtained results are consistent regarding both the disappearance of C2H5• and the formation of closed shell products (n-C4H10, C2H4, C2H6), indicating that the chemical mechanism is largely understood and complete. Thermochemical parameters for C2H5• free radical resulting from the present kinetic measurements are discussed and point toward a slightly lower value for the standard heat of formation ΔfH298°(C2H5•) compared to some presently recommended values. On the basis of the present results and suitable data on the reverse reaction taken from the literature, we recommend ΔfH298°(C2H5•) = 117.3 ± 3.1 kJ/mol resulting from an average of “third law” evaluations using S298°(C2H5•) = 242.9 ± 4.6 J/K mol. The present work yields a standard heat of formation in satisfactory agreement with the results obtained by W. Tsang (ΔfH298°(C2H5•) = 119 ± 2 kJ/mol) despite using two very different experimental techniques.

  5. Rate coefficients for the reactions of C2(a(3)Pi(u)) and C2(X(1)Sigma(g)(+)) with various hydrocarbons (CH4, C2H2, C2H4, C 2 H 6 , and C3H8): a gas-phase experimental study over the temperature range 24-300 K.

    PubMed

    Páramo, Alejandra; Canosa, André; Le Picard, Sébastien D; Sims, Ian R

    updating

    The kinetics of reactions of C2(a(3)Pi(u)) and C2(X(1)Sigma(g)(+)) with various hydrocarbons (CH4, C2H2, C2H4, C2H6, and C3H8) have been studied in a uniform supersonic flow expansion over the temperature range 24-300 K. Rate coefficients have been obtained by using the pulsed laser photolysis-laser induced fluorescence technique, where both radicals were produced at the same time but detected separately. The reactivity of the triplet state was found to be significantly lower than that of the singlet ground state for all reactants over the whole temperature range of the study. Whereas C2(X(1)Sigma(g)(+)) reacts with a rate coefficient close to the gas kinetic limit with all hydrocarbons studied apart from CH4, C2(a(3)Pi(u)) appears to be more sensitive to the molecular and electronic structure of the reactant partners. The latter reacts at least one order of magnitude faster with unsaturated hydrocarbons than with alkanes, and the rate coefficients increase very significantly with the size of the alkane. Results are briefly discussed in terms of their potential astrophysical impact.

  6. In-Situ Measurements of HCN and CH3CN in the Pacific Troposphere: Sources, Sinks, and Comparisons with Spectroscopic Observations

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, L.; Herlth, D.; Czech, E.; Viezee, W.; Li, Q.; Jacob, D. J.; Blake, D.; Sachse, G.; Harward, C. N.;

    updating

    We report the first in-situ measurements of hydrogen cyanide (HCN) and acetonitrile (CH3CN) from the Pacific troposphere (0-12 km) obtained during the NASA/Trace-P mission (Feb.-April, 2001). Mean HCN and CH3CN mixing ratios of 243 (+/-118) ppt and 149 (+/-56) ppt respectively, were measured. The in-situ observations correspond to a total HCN column of 4.4-4.9 x 10(exp 15) molec. cm(exp -2) and a CH3CN column of 2.8-3.0 x 10(exp 15) molec. cm(exp -2). This HCN column is in good agreement with available spectroscopic observations. The atmospheric concentrations of HCN and CH3CN were greatly influenced by outflow of pollution from Asia. There is a linear relationship between the mixing ratios of HCN and CH3CN, and in turn these are well correlated with tracers of biomass combustion (e.g. CH3Cl, CO). Relative enhancements with respect to known tracers of biomass combustion within selected plumes in the free troposphere, and pollution episodes in the boundary layer allow an estimation of a global biomass burning source of 0.8+/-0.4 Tg (N)/y for HCN and 0.4+/-0.1 Tg (N)/y for CH3CN. In comparison, emissions from automobiles and industry are quite small (HCN and CH3CN indicated reduced mixing ratios in the MBL (Marine Boundary Layer). Using, a simple box model, the observed gradients across the top of the MBL are used to derive an oceanic flux of 6.7 x 10(exp -15) g (N) cm(exp -2)/s for HCN and 4.8 x 10(exp -15) g (N) cm(exp -2)/s for CH3CN. An air-sea exchange model is used to conclude that this flux can be maintained if the oceans are under-saturated in HCN and CH3CN by 23% and 17%, respectively. It is inferred that oceanic loss is a dominant sink for these nitrites, and they deposit some 1.3 Tg (N) of nitrogen annually to the oceans. Assuming reaction with OH radicals and loss to the oceans as the major removal processes, a mean atmospheric residence time of 4.7 months for HCN and 5.1 months for CH3CN is calculated. A global

  7. Flavonoid Regulation of HCN 2 Channels*

    PubMed Central

    Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.

    updating

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:updating

  8. HCN and chromophore formation on Jupiter

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ishikawa, Yoji

    updating

    Reaction paths for the formation of HCN and chromophores on Jupiter are suggested. The reactions involve photolysis of ammonia/acetylene mixtures. Experimental data supporting these pathways are reported.

  9. HCN Channels Modulators: The Need for Selectivity

    PubMed Central

    Romanelli, Maria Novella; Sartiani, Laura; Masi, Alessio; Mannaioni, Guido; Manetti, Dina; Mugelli, Alessandro; Cerbai, Elisabetta

    updating

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators. PMID:updating

  10. Analysis Of The Different Zones Of Glow Discharge Of Ethyl Alcohol (C 2 H 6 O)

    NASA Astrophysics Data System (ADS)

    Torres, C.; Reyes, P. G.; Mulia, J.; Castillo, F.; Martínez, H.

    updating

    The aim of this work is to explore the emission spectroscopy of ethyl alcohol in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region C6Hupdatingnm), CHO (519.56nm) and Hupdatingnm), in the positive column COupdating y 337.00nm), O+ (357.48nm), CH+ (380.61nm) and CO+ (399.73nm); in the cathode region we observed O+ (391.19nm), CHOCHO (428.00nm), CO+ (471.12nm) and Hupdatingnm). C6H5, CHO y H2 species occurring in all regions analyzed varying the glow discharge emission intensity.

  11. Peroxy Radical Measurements during the IRRONIC Field Project by C 2 H 6 - NO Chemical Amplification

    NASA Astrophysics Data System (ADS)

    Wood, E. C. D.; Kundu, S.; Deming, B.; Lew, M.; Stevens, P. S.; Sklaveniti, S.; Dusanter, S.

    updating

    We present measurements of total peroxy radicals (HO2 + RO2) during the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) field project in Bloomington, Indiana during July 2015. Peroxy radicals were measured by chemical amplification using ethane and nitric oxide in dual PFA reaction chambers, and the amplification product NO2 was quantified by cavity attenuated phase shift spectroscopy. On sunny days mid-day peroxy radical mixing ratios were typically between 20 and 70 ppt and were well correlated with "HO2*" measured by the Indiana University Laser-Induced Fluorescence with Fluorescence Assay by Gas Expansion (IU-FAGE) instrument. The ratio of total peroxy radicals (UMass) to the IU-FAGE HO2* measurements was greater than two. We also describe results from an informal intercomparison of the two instruments' calibration sources, which are based on acetone photolysis (UMass) and water photolysis (IU). In addition to sampling the IU calibration source in "amplification" mode, the UMass instrument also separately quantified the HO2 mixing ratio in the IU calibration gas by reaction with excess NO and subsequent quantification of the NO2 produced.

  12. The HNC/HCN ratio in comets

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Dickens, J. E.; Lovell, A. J.; Schloerb, F. P.; Senay, M.; Bergin, E. A.; Jewitt, D.; Matthews, H. E.; Ferris, J. P. (Principal Investigator)

    updating

    The abundance ratio of the isomers HCN and HNC has been investigated in comet Hale-Bopp (C/1995 O1) through observations of the J = 4-3 rotational transitions of both species for heliocentric distances 0.93 HCN line, we find that the column density ratio of HNC/HCN in our telescope beam increases significantly as the comet approaches the Sun. We compare this behavior to that predicted from an ion-molecule chemical model and conclude that the HNC is produced in significant measure by chemical processes in the coma; i.e., for comet Hale-Bopp, HNC is not a parent molecule sublimating from the nucleus.

  13. Chemical Recycling of HCN in Cometary Comae

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Kawakita, Hideyo; Shinnaka, Yoshiharu; Mumma, Michael J.; Kobayashi, Hitomi; Ogawa, Sayuri

    updating

    Modeling is essential to understand the important physical and chemical processes that occur in cometary comae, especially the relationship between putative parent and daughter molecules, such as, HCN and CN. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, contributing to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that interact via impacts are important to the overall excitation and dissociation processes in the inner coma. We consider the relevant processes in the collision-dominated, inner coma of a comet within a global modeling framework to understand observations of HCN and CN. The CN source(s) must be able to produce highly collimated jets, be consistent with the observed CN parent scale length, and have a production rate consistent with the observed CN production. HCN fulfills these conditions in some comets (e.g., 1P/Halley, Hale-Bopp) while it does not in others (e.g., 8P/Tuttle, 6P/d’Arrest, 73P/S-W3, 2P/Encke, 9P/Temple 1 and C/2007 W1).We investigate the chemistry of HCN with our chemical kinetics coma model including a network with other possible CN parents, as well as a dust component that may be a potential source of CN. It is seen that the major destruction pathways of HCN are via photo dissociation (into H and CN) and protonation with water group ions - primarily H3O+. We point out the intriguing “recycling” of HCN via protonation reactions with H3O+, H2O+, OH+, and subsequent dissociative recombination. It seems that HCN molecules observed in the coma can consist of those initially released from the nucleus and those that are freshly formed at different locations in the coma via these protonation/dissociation reactions. We will investigate implications for reconciling discrepancies between observations of HCN and CN in cometary comae.Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program. This program is partially

  14. A Submillimeter HCN Laser in IRC +10216.

    PubMed

    Schilke; Mehringer; Menten

    updating

    We report the detection of a strong submillimeter-wavelength HCN laser line at a frequency near 805 GHz toward the carbon star IRC +10216. This line, the J=9-8 rotational transition within the (0400) vibrationally excited state, is one of a series of HCN laser lines that were first detected in the laboratory in the early days of laser spectroscopy. Since its lower energy level is 4200 K above the ground state, the laser emission must arise from the innermost part of IRC +10216's circumstellar envelope. To better characterize this environment, we observed other, thermally emitting, vibrationally excited HCN lines and found that they, like the laser line, arise in a region of temperature approximately 1000 K that is located within the dust formation radius; this conclusion is supported by the line width of the laser. The (0400), J=9-8 laser might be chemically pumped and may be the only known laser (or maser) that is excited both in the laboratory and in space by a similar mechanism.

  15. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    SciTech Connect

    Pizzarello, Sandra, E-mail: nguyenquanghuy@gmail.com

    updating

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organicmore » compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.« less

  16. Structural studies on HCN oligomers. [catalysts for prebiotic processes

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Edelson, E. H.; Auyeung, J. M.; Joshi, P. C.

    updating

    NMR spectral studies on the HCN oligomers suggest the presence of carboxamide and urea groupings. The release of CO2, H2O, HCN, CH3CN, HCONH2 and pyridine on pyrolysis is consistent with the presence of these groupings as well as carboxylic acid groups. No basic primary amine groupings could be detected with fluorescamine. Hydrazinolysis of the HCN oligomers releases 10% of the amino acids normally released by acid hydrolysis. The oligomers give a positive biuret test but this is not due to the presence of peptide bonds. There is no conclusive evidence for the presence of peptide bonds in the HCN oligomers. No diglycine was detected on partial hydrolysis of the HCN oligomers at pH 8.5 suggesting that HCN oligomers were not a source of prebiotic peptides.

  17. Novel insights into the distribution of cardiac HCN channels: an expression study in the mouse heart.

    PubMed

    Herrmann, Stefan; Layh, Beate; Ludwig, Andreas

    updating

    HCN pacemaker channels (I(f) channels) are believed to contribute to important functions in the heart; thus these channels became an attractive target for generating transgenic mouse mutants to elucidate their role in physiological and pathophysiological cardiac conditions. A full understanding of cardiac I(f) and the interpretation of studies using HCN mouse mutants require detailed information about the expression profile of the individual HCN subunits. Here we investigate the cardiac expression pattern of the HCN isoforms at the mRNA as well as at the protein level. The specificity of antibodies used was strictly confirmed by the use of HCN1, HCN2 and HCN4 knockout animals. We find a low, but highly differential HCN expression profile outside the cardiac conduction pathway including left and right atria and ventricles. Additionally HCN distribution was investigated in tissue slices of the sinoatrial node, the atrioventricular node, the bundle of His and the bundle branches. The conduction system was marked by acetylcholine esterase staining. HCN4 was confirmed as the predominant isoform of the primary pacemaker followed by a distinct expression of HCN1. In contrast HCN2 shows only a confined expression to individual pacemaker cells. Immunolabeling of the AV-node reveals also a pronounced specificity for HCN1 and HCN4. Compared to the SN and AVN we found a low but selective expression of HCN4 as the only isoform in the atrioventricular bundle. However in the bundle branches HCN1, HCN4 and also HCN2 show a prominent and selective expression pattern. Our results display a characteristic distribution of individual HCN isoforms in several cardiac compartments and reveal that beside HCN4, HCN1 represents the isoform which is selectively expressed in most parts of the conduction system suggesting a substantial contribution of HCN1 to pacemaking. 2011 Elsevier Ltd. All rights reserved.

  18. The HNC/HCN ratio in star-forming regions

    SciTech Connect

    Graninger, Dawn M.; Öberg, Karin I.; Herbst, Eric

    updating

    HNC and HCN, typically used as dense gas tracers in molecular clouds, are a pair of isomers that have great potential as a temperature probe because of temperature dependent, isomer-specific formation and destruction pathways. Previous observations of the HNC/HCN abundance ratio show that the ratio decreases with increasing temperature, something that standard astrochemical models cannot reproduce. We have undertaken a detailed parameter study on which environmental characteristics and chemical reactions affect the HNC/HCN ratio and can thus contribute to the observed dependence. Using existing gas and gas-grain models updated with new reactions and reaction barriers, we find that in staticmore » models the H + HNC gas-phase reaction regulates the HNC/HCN ratio under all conditions, except for very early times. We quantitatively constrain the combinations of H abundance and H + HNC reaction barrier that can explain the observed HNC/HCN temperature dependence and discuss the implications in light of new quantum chemical calculations. In warm-up models, gas-grain chemistry contributes significantly to the predicted HNC/HCN ratio and understanding the dynamics of star formation is therefore key to model the HNC/HCN system.« less

  19. Sick sinus syndrome in HCN 1-deficient mice.

    PubMed

    Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A

    updating

    Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.

  20. Simple Organics and Biomonomers Identified in HCN Polymers: An Overview

    PubMed Central

    Ruiz-Bermejo, Marta; Zorzano, María-Paz; Osuna-Esteban, Susana

    updating

    Hydrogen cyanide (HCN) is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions. It has even been proposed that HCN polymers could be present in objects such as asteroids, moons, planets and, in particular, comets. Moreover, it has been suggested that these polymers could play an important role in the origin of life. In this review, the simple organics and biomonomers that have been detected in HCN polymers, the analytical techniques and procedures that have been used to detect and characterise these molecules and an exhaustive classification of the experimental/environmental conditions that favour the formation of HCN polymers are summarised. Nucleobases, amino acids, carboxylic acids, cofactor derivatives and other compounds have been identified in HCN polymers. The great molecular diversity found in HCN polymers encourages their placement at the central core of a plausible protobiological system. PMID:updating

  1. The vertical distribution and origin of HCN in Neptune's atmosphere

    NASA Technical Reports Server (NTRS)

    Lellouch, Emmanuel; Romani, Paul N.; Rosenqvist, Jan

    updating

    Measurements and modeling of the (3-2) rotational line of hydrogen cyanide at 265.9 GHz in Neptune's atmosphere are presented. High signal-to-noise observations provide information on the HCN vertical distribution in Neptune's stratosphere. The HCN mixing ratio is found to be nearly uniform with height above the condensation level. Best fits occur for HCN distributions that have a slight increase with altitude. A least-squares analysis yields a mixing ratio of (3.2 +/- 0.8)10(exp -10) at 2 mbar and a mean mixing ratio scale height of 250(sup 750)(sub -110) km in the 0.1-3 mbar region. To interpret these results, we developed a photochemical model of HCN. HCN formation is initiated by the reaction between CH3 radicals, produced from methane photochemistry, and N atoms. The primary sink for HCN is condensation, with minor contributions from photolysis and chemical losses. Two possible sources of N atoms are investigated: (1) infall of N escaped from Triton's upper atmosphere, and (2) galactic cosmic ray (GCR) impact on internal N2. Given the uncertainties on (i) the transport and possible ionization of N in Neptune's magnetosphere, and the fate of N(+) reaching Neptune's upper atmosphere and (ii) the N2 mixing ratio in Neptune's deep atmosphere, we suggest that both sources of N atoms may significantly contibute to the formation of HCN.

  2. Optical properties of poly-HCN and their astronomical applications

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.; Thompson, W. R.; Arakawa, E. T.; Meisse, C.; Tuminello, P. S.

    updating

    Matthews (1992) has proposed that HCN "polymer" is ubiquitous in the solar system. We apply vacuum deposition and spectroscopic techniques previously used on synthetic organic heteropolymers (tholins), kerogens, and meteoritic organic residues to the measurement of the optical constants of poly-HCN in the wavelength range 0.05-40 micrometers. These measurements allow quantitative comparison with spectrophotometry of organic-rich bodies in the outer solar system. In a specific test of Matthews' hypothesis, poly-HCN fails to match the optical constants of the haze of the Saturnian moon, Titan, in the visible and near-infrared derived from astronomical observations and standard models of the Titan atmosphere. In contrast, a tholin produced from a simulated Titan atmosphere matches within the probable errors. Poly-HCN is much more N-rich than Titan tholin.

  3. DEVELOPMENT OF A MONITOR FOR HCN IN MOBILE SOURCE EMISSIONS

    EPA Science Inventory

    Three real-time monitors for measurement of HCN concentrations in mobile source emissions have been designed, built, tested, and delivered to the Environmental Protection Agency (EPA). The important design parameters for these identical instruments were determined during the firs...

  4. Near Infrared Spectra of H2O/HCN Mixtures

    NASA Technical Reports Server (NTRS)

    Mastrapa, R. M.; Bernstein, M. P.; Sanford, S. A.

    updating

    Cassini's VIMS has already returned exciting results interpreting spectra of Saturn's icy satellites. The discovery of unidentified features possibly due to CN compounds inspired the work reported here. We wanted to test HCN as a possibility for explaining these features, and also explore how the features of HCN change when mixed with H2O. We have previously noted that mixing H20 and CO2 produces new spectral features and that those features change with temperature and mixing ratio.

  5. CN and HCN in the infrared spectrum of IRC + 10216

    NASA Technical Reports Server (NTRS)

    Wiedemann, G. R.; Deming, D.; Jennings, D. E.; Hinkle, Kenneth H.; Keady, John J.

    updating

    The abundance of HCN in the inner circumstellar shell of IRC + 10216 has been remeasured using the 12-micron nu2 band. The 12-micron lines are less saturated than HCN 3-micron lines previously detected in the spectrum of IRC + 10216. The observed 12-micron HCN line is formed in the circumstellar shell from about 4 to 12 R sub * in accord with a photospheric origin for HCN. The derived HCN abundance in the 4 to 12 R sub* region is 4 x 10 exp-5 and the column density is 7 x 10 exp 18/sq cm. The 5-micron CN vibration-rotation fundamental band was detected for the first time in an astronomical source. Using four CN lines, the CN column density was determined to be 2.6 x 10 exp 15/sq cm and the rotational temperature to be 8 +/-2 K. The peal radial abundance is 1 x 10 exp -5. The values for the temperature and abundance are in good agreement with microwave results and with the formation of CN from the photolysis of HCN.

  6. The expression of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN 1) and HCN 2 in the rat trigeminal ganglion, sensory root, and dental pulp.

    PubMed

    Cho, Y S; Kim, Y S; Moozhayil, S J; Yang, E S; Bae, Y C

    updating

    Hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and 2 (HCN2) are abundantly expressed in primary sensory neurons and contribute to neuronal excitability and pathological pain. We studied the expression of HCN1 and HCN2 in the rat trigeminal ganglion (TG) neurons and axons in the dental pulp, and the changes in their expression following inflammation, using light- and electron-microscopic immunocytochemistry and quantitative analysis. HCN1 and HCN2 were expressed predominantly in large-sized, neurofilament 200-immunopositive (+) or parvalbumin+ soma in the TG whereas they were expressed mostly in unmyelinated and small myelinated axons in the sensory root. The expression was particularly strong along the plasma membrane in the soma. In the dental pulp, majority of HCN1+ and HCN2+ axons coexpressed calcitonin gene-related peptide. They were expressed mainly in the peripheral pulp and pulp horn where the axons branch extensively in the dental pulp. The expression of HCN1 and HCN2 in TG neurons increased significantly in rats with experimentally induced inflammation of the dental pulp. Our findings support the notion that HCN1 and HCN2 are expressed mainly by both the soma of mechanosensitive neurons in the TG and peripheral axons of nociceptive neurons in the sensory root, and may play a role in the mechanisms of inflammatory pain from the dental pulp. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. The Photodissociation of HCN and HNC: Effects on the HNC/HCN Abundance Ratio in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Aguado, Alfredo; Roncero, Octavio; Zanchet, Alexandre; Agúndez, Marcelino; Cernicharo, José

    updating

    The impact of the photodissociation of HCN and HNC isomers is analyzed in different astrophysical environments. For this purpose, the individual photodissociation cross sections of HCN and HNC isomers have been calculated in the 7-13.6 eV photon energy range for a temperature of 10 K. These calculations are based on the ab initio calculation of three-dimensional adiabatic potential energy surfaces of the 21 lower electronic states. The cross sections are then obtained using a quantum wave packet calculation of the rotational transitions needed to simulate a rotational temperature of 10 K. The cross section calculated for HCN shows significant differences with respect to the experimental one, and this is attributed to the need to consider non-adiabatic transitions. Ratios between the photodissociation rates of HCN and HNC under different ultraviolet radiation fields have been computed by renormalizing the rates to the experimental value. It is found that HNC is photodissociated faster than HCN by a factor of 2.2 for the local interstellar radiation field and 9.2 for the solar radiation field, at 1 au. We conclude that to properly describe the HNC/HCN abundance ratio in astronomical environments illuminated by an intense ultraviolet radiation field, it is necessary to use different photodissociation rates for each of the two isomers, which are obtained by integrating the product of the photodissociation cross sections and ultraviolet radiation field over the relevant wavelength range.

  8. Detection of CO and HCN in Pluto's atmosphere with ALMA

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Gurwell, M.; Butler, B.; Fouchet, T.; Lavvas, P.; Strobel, D. F.; Sicardy, B.; Moullet, A.; Moreno, R.; Bockelée-Morvan, D.; Biver, N.; Young, L.; Lis, D.; Stansberry, J.; Stern, A.; Weaver, H.; Young, E.; Zhu, X.; Boissier, J.

    updating

    Observations of the Pluto-Charon system, acquired with the ALMA interferometer on June 12-13, 2015, have led to the detection of the CO(3-2) and HCN(4-3) rotational transitions from Pluto (including the hyperfine structure of HCN), providing a strong confirmation of the presence of CO, and the first observation of HCN in Pluto's atmosphere. The CO and HCN lines probe Pluto's atmosphere up to ∼450 km and ∼900 km altitude, respectively, with a large contribution due to limb emission. The CO detection yields (i) a much improved determination of the CO mole fraction, as 515 ± 40 ppm for a 12 μbar surface pressure (ii) strong constraints on Pluto's mean atmospheric dayside temperature profile over ∼50-400 km, with clear evidence for a well-marked temperature decrease (i.e., mesosphere) above the 30-50 km stratopause and a best-determined temperature of 70 ± 2 K at 300 km, somewhat lower than previously estimated from stellar occultations (81 ± 6 K), and in agreement with recent inferences from New Horizons / Alice solar occultation data. The HCN line shape implies a high abundance of this species in the upper atmosphere, with a mole fraction >1.5 × 10-5 above 450 km and a value of 4 × 10-5 near 800 km. Assuming HCN at saturation, this would require a warm (>92 K) upper atmosphere layer; while this is not ruled out by the CO emission, it is inconsistent with the Alice-measured CH4 and N2 line-of-sight column densities. Taken together, the large HCN abundance and the cold upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of magnitude) hitherto unseen in planetary atmospheres, probably due to a lack of condensation nuclei above the haze region and the slow kinetics of condensation at the low pressure and temperature conditions of Pluto's upper atmosphere. HCN is also present in the bottom ∼100 km of the atmosphere, with a updating mole fraction; this implies either HCN saturation or undersaturation there, depending on the precise

  9. HCN production from impact ejecta on the early Earth

    NASA Astrophysics Data System (ADS)

    Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. J.

    updating

    Major impact events have drastically altered the evolution of life on Earth. The reentry of ejecta formed from these events can trigger widespread chemical changes to the atmosphere on a global scale. This mechanism was proposed as a source of HCN during the Late Heavy Bombardment (LHB), 4.1 to 3.8 billion years ago. Significant concentrations of HCN in surface water could directly lead to adenine formation, a precursor for RNA. This work uses the Direct Simulation Monte Carlo (DSMC) method to examine the production of CN and HCN due to the reentry of impact ejecta. We use the Statistical Modeling in Low-Density Environment (SMILE) code, which utilizes the Total Collisional Energy (TCE) model for reactions. The collisions are described by the Variable Soft Sphere (VSS) and Larsen-Borgnakke (LB) models. We compare this nonequilibrium production to equilibrium concentrations from bulk atmospheric heating. The equilibrium HCN yield for a 1023 J impact is 7.0×104 moles, corresponding to a 2.5×1014 molecules per m2 surface deposition. We find that additional CN and HCN is produced under thermochemical nonequilibrium, particularly at higher altitudes. The total nonequilibrium yield for a 1023 J impact is 1.2×106 moles of HCN, a value 17 times the equilibrium result. This corresponds to a surface deposition of 1.4×1015 molecules per m2. This increase in production indicates that thermochemical nonequilibrium effects play a strong role in HCN from impact ejecta, and must be considered when investigating impacts as a plausible mechanism for significant adenine production during the LHB.

  10. Rotational excitation of HCN by para- and ortho-H₂.

    PubMed

    Vera, Mario Hernández; Kalugina, Yulia; Denis-Alpizar, Otoniel; Stoecklin, Thierry; Lique, François

    updating

    Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H2(j = 0, 2) and ortho-H2(j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm(-1). The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K. The HCN rate coefficients are strongly dependent on the rotational level of the H2 molecule. In particular, the rate coefficients for collisions with para-H2(j = 0) are significantly lower than those for collisions with ortho-H2(j = 1) and para-H2(j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H2(j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H2(j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H2(j = 0) rate coefficients. Significant differences were found due the inclusion of the H2 rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.

  11. Potential energy function for CH3+CH3 ⇆ C 2 H 6 : Attributes of the minimum energy path

    NASA Astrophysics Data System (ADS)

    Robertson, S. H.; Wardlaw, D. M.; Hirst, D. M.

    updating

    The region of the potential energy surface for the title reaction in the vicinity of its minimum energy path has been predicted from the analysis of ab initio electronic energy calculations. The ab initio procedure employs a 6-31G** basis set and a configuration interaction calculation which uses the orbitals obtained in a generalized valence bond calculation. Calculated equilibrium properties of ethane and of isolated methyl radical are compared to existing theoretical and experimental results. The reaction coordinate is represented by the carbon-carbon interatomic distance. The following attributes are reported as a function of this distance and fit to functional forms which smoothly interpolate between reactant and product values of each attribute: the minimum energy path potential, the minimum energy path geometry, normal mode frequencies for vibrational motion orthogonal to the reaction coordinate, a torsional potential, and a fundamental anharmonic frequency for local mode, out-of-plane CH3 bending (umbrella motion). The best representation is provided by a three-parameter modified Morse function for the minimum energy path potential and a two-parameter hyperbolic tangent switching function for all other attributes. A poorer but simpler representation, which may be satisfactory for selected applications, is provided by a standard Morse function and a one-parameter exponential switching function. Previous applications of the exponential switching function to estimate the reaction coordinate dependence of the frequencies and geometry of this system have assumed the same value of the range parameter α for each property and have taken α to be less than or equal to the ``standard'' value of 1.0 Å-1. Based on the present analysis this is incorrect: The α values depend on the property and range from ˜1.2 to ˜1.8 Å-1.

  12. Dissipation dynamics of field-free molecular alignment for symmetric-top molecules: Ethane (C 2 H 6 )

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Billard, F.; Yu, X.; Faucher, O.; Lavorel, B.

    updating

    The field-free molecular alignment of symmetric-top molecules, ethane, induced by intense non-resonant linearly polarized femtosecond laser pulses is investigated experimentally in the presence of collisional relaxation. The dissipation dynamics of field-free molecular alignment are measured by the balanced detection of ultrafast molecular birefringence of ethane gas samples at high pressures. By separating the molecular alignment into the permanent alignment and the transient alignment, the decay time-constants of both components are quantified at the same pressure. It is observed that the permanent alignment always decays slower compared to the transient alignment within the measured pressure range. This demonstrates that the propensity of molecules to conserve the orientation of angular momentum during collisions, previously observed for linear species, is also applicable to symmetric-top molecules. The results of this work provide valuable information for further theoretical understanding of collisional relaxation within nonlinear polyatomic molecules, which are expected to present interesting and nontrivial features due to an extra rotational degree of freedom.

  13. Alma Observations of HCN and its Isotopologues on Titan

    NASA Technical Reports Server (NTRS)

    Molter, Edward M.; Nixon, C. A.; Cordiner, M. A.; Serigano, J.; Irwin, P. G. J.; Teanby, N. A.; Charnley, S. B.; Lindberg, J. E.

    updating

    We present sub-millimeter spectra of HCN isotopologues on Titan, derived from publicly available ALMA flux calibration observations of Titan taken in early 2014. We report the detection of a new HCN isotopologue on Titan, H13C15N, and confirm an earlier report of detection of DCN. We model high signal-to-noise observations of HCN, H13CN, HC15N, DCN, and H13C15N to derive abundances and infer the following isotopic ratios: 12C/13C = 89.8 +/- 2.8, 14N/15N = 72.3 +/- 2.2, D/H = (2.5 +/- 0.2) × 10-4, and HCN/H13C15N = 5800 +/- 270 (1sigma errors). The carbon and nitrogen ratios are consistent with and improve on the precision of previous results, confirming a factor of approximately 2.3 elevation in 14N/15N in HCN compared to N2 and a lack of fractionation in 12C/13C from the protosolar value. This is the first published measurement of D/H in a nitrile species on Titan, and we find evidence for a factor of approximately 2 deuterium enrichment in hydrogen cyanide compared to methane. The isotopic ratios we derive may be used as constraints for future models to better understand the fractionation processes occurring in Titan's atmosphere.

  14. Radiative transfer of HCN : interpreting observations of hyperfine anomalies

    NASA Astrophysics Data System (ADS)

    Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.

    updating

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.

  15. Electric discharge synthesis of HCN in simulated Jovian atmospheres

    NASA Technical Reports Server (NTRS)

    Stribling, Roscoe; Miller, Stanley L.

    updating

    Corona discharge is presently considered as a possible source of the HCN detected in the Jovian atmosphere at 2.2 x 10 to the -7th moles/sq cm column density, for the cases of gas mixtures containing H2, CH4, and NH3, with H2/CH4 ratios from 4.4 to 1585. A 3:1 ratio of corona discharge to lightning energy similar to that of the earth is applied to Jupiter. Depending on the lightning energy available on Jupiter and the eddy diffusion coefficients in the synthesis region, HCN column densities generated by corona discharge could account for about 10 percent of the HCN observed.

  16. New CO and HCN sources associated with IRAS carbon stars

    NASA Technical Reports Server (NTRS)

    NGUYEN-Q-RIEU; Epchtein, N.; TRUONG-BACH; Cohen, M.

    updating

    Emission of CO and HCN was detected in 22 out of a sample of 53 IRAS sources classified as unidentified carbon-rich objects. The sample was selected according to the presence of the silicon carbide feature as revealed by low-resolution spectra. The molecular line widths indicate that the CO and HCN emission arises from the circumstellar envelopes of very highly evolved stars undergoing mass loss. The visible stars tend to be deficient in CO as compared with unidentified sources. Most the detected CO and HCN IRAS stars are distinct and thick-shelled objects, but their infrared and CO luminosities are similar to those of IRC + 102156 AFGL and IRC-CO evolved stars. The 12 micron flux seems to be a good indicator of the distance, hence a guide for molecular searches.

  17. [Inhibition of HCN 1 channels by ketamine accounts for its antidepressant actions].

    PubMed

    Li, Jing; Chen, Feng-feng; Chen, Xiang-dong; Zhou, Cheng

    updating

    To investigate the roles of hyperolarization-actived cyclic nucleotide-gated channels 1 (HCN1) in antidepressant actions of ketamine (KET). Male HCN1 knock out (HCN1-/- ) and wildtype (HCN1+/+ ) C57BL6 mice (8-12 weeks, 20-25 g) were chosen. The depression model of mice was developed by continuously oral administration of low dosage of corticosterone (CORT). The immobility time in forced swimming tests (FST) was used to assess the depressive state of mice. Then the two genotype depressive mice were treated with single intraperitoneal injection of 5 mg/kg ketamine (KET group, n=7) or same volume of normal saline (NS group, n=7) respectively. After treatment, the immobility time at 30 min, 24 h and 7 d after the intraperitoneal injection of ketamine or normal saline in CORT-treated mice were compared. In addition, normal HCN1-/- and HCN1+/+ mice were intraperitoneally injected of BrdU and then treated with 5 mg/kg ketamine (KET group, n=5) or same volume of normal saline (NS group, n= 5) by single intraperitoneal injection. Each group was euthanized for immunohistochemical processing of 5-Bromo-2-deoxyuridine (BrdU)-labeled cells in hippocampus at 24 h after the intraperitoneal injection of saline or ketamine. The immobility time in FST of HCN1-/- mice was less than the HCN1+/+ mice before administration of CORT. It shows that the depressive state of HCN1-/- mice is less intensive than that of HCN1+/+ mice. And the immoblility time in both HCN1-/- and HCN1+/+ mice was increased after oral administration of low dose corticosterone, with an increase in depression. In addition, the comparisons were also made to the reduction of immobility time within 30 min, 24 h and 7 d. At any time point, the reduction of immobility time in HCN1+/+ KET group was higher than those in the other three groups (PHCN1-/- KET group, HCN1+/+ NS group, HCN1-/- NS group at any point. The number of

  18. Formation of doubly and triply bonded unsaturated compounds HCN , HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects

    NASA Astrophysics Data System (ADS)

    Mencos, Alejandro; Krim, Lahouari

    updating

    We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  19. CNG and HCN channels: two peas, one pod.

    PubMed

    Craven, Kimberley B; Zagotta, William N

    updating

    Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.

  20. Vibrationally Excited HCN in the Luminous Infrared Galaxy NGC 4418

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.

    updating

    Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of Tvib ≈ 230 K between the vibrational ground and excited (v 2 = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v 2 = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO+, H13CN, HC15N, CS, N2H+, and HC3N at λ ~ 1 mm. Their relative intensities may also be affected by the infrared pumping.

  1. HCN Polymers: Toward Structure Comprehension Using High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bonnet, Jean-Yves; Thissen, Roland; Frisari, Ma; Vuitton, Veronique; Quirico, Eric; Le Roy, Léna; Fray, Nicolas; Cottin, Hervé; Horst, Sarah; Yelle, Roger

    A lot of solar system materials, including cometary ices and Titan aerosols, contain dark matter that can be interpreted as complex nitrogen bearing organic matter [1]. In laboratory experi-ments, HCN polymers are thus analogs of great interest. In fact they may be present in Titan atmosphere and in comet nuclei and then reprocessed as a CN distributed source [2], when ices began to sublimate and ejects from the nucleus organic matter grains [3]. The presence of HCN polymers is suggested because HCN molecule has been directly observed in 1P/Halley comet [4] and others. HCN polymers are also of prebiotic interest [5] as it can form amino acid under hydrolysis conditions. Even if they have been studied during the last decades, their chemical composition and structure are still poorly understood, and a great analytical effort has to be continued. In this way we present a high resolution mass spectrometry (HRMS) and a high resolution tandem mass spectrometry (MS/HRMS) analysis of HCN polymers. It was shown [6] that this is a suitable technique to elucidate composition and structure of the soluble part of tholins analogs of Titan's atmosphere aerosols. HCN polymers have never been studied by HRMS, thus we used a LTQ-Orbitrap XL high resolution mass spectrometer to analyse the HCN polymers. These are produced at LISA by direct polymerisation of pure liquid HCN, catalyzed by ammonia. HCN polymers have been completely dissolved in methanol and then injected in the mass spectrometer by ElectroSpray Ionization (ESI). This atmospheric pressure ionization process produces protonated or deprotonated ions, but it does not fragment molecules. Thus HRMS, allows a direct access to the stoechiometry of all the ionizable molecules present in the samples. Fragmentation analyses (MS/MS) of selected ions have also been performed. Thess analysis provide information about the different chemical fonctionnalities present in HCN poly-mers and also about their structure. Thus we are able to

  2. ALMA OBSERVATIONS OF HCN AND ITS ISOTOPOLOGUES ON TITAN

    SciTech Connect

    Molter, Edward M.; Nixon, C. A.; Cordiner, M. A.

    updating

    We present sub-millimeter spectra of HCN isotopologues on Titan, derived from publicly available ALMA flux calibration observations of Titan taken in early 2014. We report the detection of a new HCN isotopologue on Titan, H{sup 13}C{sup 15}N, and confirm an earlier report of detection of DCN. We model high signal-to-noise observations of HCN, H{sup 13}CN, HC{sup 15}N, DCN, and H{sup 13}C{sup 15}N to derive abundances and infer the following isotopic ratios: {sup 12}C/{sup 13}C = 89.8 ± 2.8, {sup 14}N/{sup 15}N = 72.3 ± 2.2, D/H = (2.5 ± 0.2) × 10{sup −4}, and HCN/H{sup 13}C{sup 15}N = 5800 ± 270 (1 σ errors). The carbon and nitrogen ratios are consistent with and improve on themore » precision of previous results, confirming a factor of ∼2.3 elevation in {sup 14}N/{sup 15}N in HCN compared to N{sub 2} and a lack of fractionation in {sup 12}C/{sup 13}C from the protosolar value. This is the first published measurement of D/H in a nitrile species on Titan, and we find evidence for a factor of ∼2 deuterium enrichment in hydrogen cyanide compared to methane. The isotopic ratios we derive may be used as constraints for future models to better understand the fractionation processes occurring in Titan’s atmosphere.« less

  3. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih.

    PubMed

    Baker, Emma C; Layden, Michael J; van Rossum, Damian B; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy

    updating

    HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.

  4. Stratospheric distribution of HCN from far infrared observations

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Carli, B.; Mencaraglia, F.; Carlotti, M.

    updating

    Far infrared limb thermal emission measurements of the earth's stratosphere were made with a high resolution spectrometer on a balloon payload launched from Palestine, TX, on Oct. 5, 1982. Several limb sequences of a portion of the observed spectra have been analyzed for retrieval of the stratospheric HCN profile from a number of spectral lines in the 32 to 56 cm region. The mixing ratio profile in the 20 to 37 km altitude range has been retrieved with 2-sigma uncertainties of about 4-5 km. The HCN volume mixing ratio is found to be about 139 pptv at 20 km, 127 pptv at 25 km, and increasing to 172 pptv at 37 km. The results are compared with measurements by other groups and with photochemical model calculations reported in the literature.

  5. HCN 1 Channels Contribute to the Effects of Amnesia and Hypnosis But Not Immobility of Volatile Anesthetics

    PubMed Central

    Liu, Jin; Ke, Bowen; Wang, Xiaojia; Li, Fengshan; Li, Tao; Bayliss, Douglas A.; Chen, Xiangdong

    updating

    Background HCN1 channels have been identified as targets of ketamine to produce hypnosis. Volatile anesthetics also inhibit HCN1 channels. However, the effects of HCN1 channels on volatile anesthetics in vivo is still elusive. This study uses global and conditional HCN1 knockout mice to evaluate how HCN1 channels affect the actions of volatile anesthetics. Methods Minimum alveolar concentrations (MAC) of isoflurane and sevoflurane that induced immobility (MAC of immobility) and/or hypnosis (MAC of hypnosis) were determined in wild-type (WT) mice, global HCN1 channel knockout mice (HCN1−/−), floxed HCN1 channel gene (HCN1f/f) mice and forebrain-selective HCN1 channel knockout (HCN1f/f: cre) mice. Immobility of mice was defined as no purposeful reactions to tail-clamping stimulus and hypnosis was defined as loss of righting reflex (LORR). The amnestic effects of isoflurane and sevoflurane were evaluated by fear-potentiated startle in these four strains of mice. Results All MAC values were expressed as mean ± SEM. For MAC of immobility of isoflurane, no significant difference was found among wild-type, HCN1−/−, HCN1f/f and HCN1f/f: cre mice (all ~updating% isoflurane). For both HCN1−/− and HCN1f/f: cre mice, the MAC of hypnosis for isoflurane (each ~1.05% isoflurane) were significantly increased over their nonknockout controls: HCN1−/− vs. wild-type (0.86±0.03%, PHCN1f/f: cre vs. HCN1f/f mice (0.84±0.03%, PHCN1−/− and HCN1f/f: cre mice. For MAC of immobility of sevoflurane, no significant difference was found among wild-type, HCN1−/−, HCN1f/f and HCN1f/f: cre mice (all ~2.6-2.7% sevoflurane). For both HCN1−/− and HCN1f/f: cre mice, the MAC of hypnosis for sevoflurane (each ~1.90% sevoflurane) was significantly increased over their nonknockout controls: HCN1−/− vs. wild-type (1.58±0.05%, PHCN1f/f: cre vs. HCN1f/f mice (1.56±0.05%, P

  6. Characterization of solvated electrons in hydrogen cyanide clusters: (HCN )n- (n=3, 4)

    NASA Astrophysics Data System (ADS)

    Wu, Di; Li, Ying; Li, Zhuo; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung

    updating

    Theoretical studies of the solvated electrons (HCN)n- (n =3, 4) reveal a variety of electron trapping possibilities in the (HCN)n (n =3, 4) clusters. Two isomers for (HCN)3- and four isomers for (HCN)4- are obtained at the MP2/aug -cc-pVDZ+dBF (diffusive bond functions) level of theory. In view of vertical electron detachment energies (VDEs) at the CCSD(T) level, the excess electron always "prefers" locating in the center of the system, i.e., the isomer with higher coordination number shows larger VDE value. However, the most stable isomers of the solvated electron state (HCN)3- and (HCN)4- are found to be the linear C∞ν and D∞h structures, respectively, but not the fullyl symmetric structures which have the largest VDE values.

  7. HCN Producing Bacteria Enable Sensing Of Non-Bioavailable Hg Species by the Whole Cell Biosensor

    NASA Astrophysics Data System (ADS)

    Horvat, M.; Rijavec, T.; Koron, N.; Lapanje, A.

    updating

    Bacteria play an important role in Hg transformation reactions. The production of cyanide (HCN) and other secondary metabolites seems to be key elements involved in these transformations. Current hypotheses link the role of HCN production to growth inhibition of nonHCN producing competitor organisms (role of an antimicrobial agent). Our past investigations showed that HCN production did not correlate with antimicrobial activity and since pK value of HCN is very high (pK = 9,21), it can be expected that most of the produced HCN is removed from the microenvironment. This way, the expected inhibitory concentrations can hardly be reached. Accordingly, we proposed a new concept, where the ability of complexation of transient metals by HCN served as a regulation process for the accessibility of micro-elements. In our study, we focused on the presence of HCN producing bacteria and carried it out in the Hg contaminated environment connected to the Idrija Mercury Mine, Slovenia. We characterised the isolates according to the presence of Hg resistance (HgR), level of HCN production and genetic similarities. In laboratory setups, using our merR whole cell based biosensor, we determined the transformation of low bioavailable Hg0 and HgS forms into bioavailable Hg by these HCN producing bacteria. We observed that HgR strains producing HCN had the highest impact on increased Hg bioavailability. In the proposed ecological strategy HgR HCN producing bacteria increase their competitive edge over non-HgR competitors through the increase of Hg toxicity. Due to their activity, Hg is made available to other organisms as well and thus enters into the ecosystem. Finally, using some of the characteristics of bacteria (e.g. Hg resistance genetic elements), we developed a fully automated sensing approach, combining biosensorics and mechatronics, to measure the bioavailability of Hg in situ.

  8. Association reactions at low pressure. 5: The CH3(+)/HCN system. A final word?

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Sen, Atish D.; Huntress, Wesley, Jr.; McEwan, Murray J.

    updating

    The reaction of the methyl cation with hydrogen cyanide is revisited. We have confidence that we have resolved a long standing apparent contradiction of experimental results. A literature history is presented along with one new experiment and a re-examination of an old experiment. In this present work it is shown that all of the previous studies had made consistent observations. Yet, each of the previous studies failed to observe all of the information present. The methyl cation does react with HCN by radiative association, a fact which had been in doubt. The product ions formed in the two-body and three-body processes react differently with HCN. The collisionally stabilized association product formed by a three-body mechanism, does not react with HCN and is readily detected in the experiments. The radiatively stabilized association product, formed by a slow two-body reaction, is not detected because it reacts with HCN by a fast proton transfer reaction forming the protonated HCN ion. Previous studies either 'lost' this product in the extremely large protonated HCN signal that is always present when HCN is used, or discounted it for various reasons. We have been able to show by ion cyclotron resonance (ICR) techniques (both FT-ICR and tandem ICR-dempster-ICR) that the radiative association product does react with the HCN to form the protonated HCN ion.

  9. Photochemistry of methane and the formation of hydrocyanic acid (HCN ) in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    updating

    A one-dimensional photochemical model is used to analyze the photochemistries of CH4 and HCN in the primitive terrestrial atmosphere. CH4, N2, and HCN photolysis are examined. The background atmosphere and boundary conditions applied in the analysis are described. The formation of HCN as a by-product of N2 and CH4 photolysis is investigated; the effects of photodissociation and rainfall on HCN is discussed. The low and high CH4 mixing ratios and radical densities are studied.

  10. Cotton-Mouton polarimeter with HCN laser on CHS

    SciTech Connect

    Akiyama, T.; Kawahata, K.; Ito, Y.

    Polarimeters based on the Cotton-Mouton effect hold promise for electron density measurements. We have designed and installed a Cotton-Mouton polarimeter on the Compact Helical System. The Cotton-Mouton effect is measured as the phase difference between probe and reference beams. In this system, an interferometric measurement can be performed simultaneously with the same probe chord. The light source is a HCN laser (wavelength of 337 {mu}m). Digital complex demodulation is adopted for small phase analysis. The line averaged density evaluated from the polarimeter along a plasma center chord is almost consistent with that from the interferometer.

  11. Quantifying the emissions of HCN from on-road vehicles in urban areas

    NASA Astrophysics Data System (ADS)

    Moussa, S. G.; Leithead, A.; Wentzell, J. J.; Lu, G.; Li, S.; Brook, J.; Liggio, J.

    updating

    Hydrogen Cyanide (HCN), has been considered a marker for biomass burning emissions. Despite its adverse health impacts, estimate of its global sources and sinks are highly uncertain due to a limited number of field and laboratory studies. In particular, HCN emissions from automobile exhaust are not well constrained for modern vehicles, and thought to be relatively small compared to emissions from biomass burning. In the current study, HCN emissions from individual diesel and gasoline vehicles were quantified as a function of engine driving mode, and fuel type. Proton transfer Reaction-Time of Flight-Mass spectrometry (PTR-ToF-MS) was used to measure HCN emissions from diesel engines operating on ultra-low sulfur diesel (ULSD) and various bio-diesel blends including Soy, Tallow, and Canola. Significant emissions of HCN were observed from all vehicles, and enhanced with the use of biodiesel. In addition, ambient measurements of HCN in a traffic dominated urban area in Toronto, Canada demonstrated that a correlation between HCN, and traditional vehicle emissions markers such as benzene and xylenes exists and indicating that HCN has the potential to be a marker of fuel combustion. The ambient data and the calculated emission factors further suggest that vehicular emissions are a major source of HCN even in the presence of biomass burning, and that near roadway conditions may represent the dominant exposure pathway to HCN in urban areas. Results of this study have important implications on HCN global budget, health impacts in urban areas and the effect of alternate fuels on the emissions of this toxic species.

  12. Improvement of the positive bias stability of a-IGZO TFTs by the HCN treatment

    NASA Astrophysics Data System (ADS)

    Kim, Myeong-Ho; Choi, Myung-Jea; Kimura, Katsuya; Kobayashi, Hikaru; Choi, Duck-Kyun

    updating

    In recent years, many researchers have attempted to improve the bias stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). In this study, the hydrogen cyanide (HCN) treatment was carried out to improve the positive bias stability of bottom-gate a-IGZO TFTs. The HCN treatment was performed using a 0.1 M HCN solution with a pH of 10 at room temperature. Before applying the positive bias stress, there were no differences in the major electrical properties, including the saturation mobility (μsat), threshold voltage (Vth), and subthreshold swing (S/S), between HCN-treated and non-HCN-treated devices. However, after applying the positive bias stress, the HCN-treated device showed superior bias stability compared to the non-HCN-treated device. This difference is associated with the passivation of the defect states and the surface of the back-channel layer of the HCN-treated device by cyanide ions.

  13. Disturbed Processing of Contextual Information in HCN 3 Channel Deficient Mice

    PubMed Central

    Stieglitz, Marc S.; Fenske, Stefanie; Hammelmann, Verena; Becirovic, Elvir; Schöttle, Verena; Delorme, James E.; Schöll-Weidinger, Martha; Mader, Robert; Deussing, Jan; Wolfer, David P.; Seeliger, Mathias W.; Albrecht, Urs; Wotjak, Carsten T.; Biel, Martin; Michalakis, Stylianos; Wahl-Schott, Christian

    updating

    Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/−) mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure. PMID:updating

  14. Chemical evolution. XXII - The hydantoins released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Lobo, A. P.

    updating

    The isolation of three hydantoins from HCN oligomers is described. One of these hydantoins, 5-carboxymethylidine hydantoin (5-CMH), rearranges to pyrimidine orotic acid in basic solution. The isolation of 5-CMH suggests the possibility that pyrimidines were formed directly from HCN on the primitive earth.

  15. Widespread HCN maser emission in carbon-rich evolved stars

    NASA Astrophysics Data System (ADS)

    Menten, K. M.; Wyrowski, F.; Keller, D.; Kamiński, T.

    updating

    Context. HCN is a major constituent of the circumstellar envelopes of carbon-rich evolved stars, and rotational lines from within its vibrationally excited states probe parts of these regions closest to the stellar surface. A number of such lines are known to show maser action. Historically, in one of them, the 177 GHz J = 2 → 1 line in the l-doubled bending mode has been found to show relatively strong maser action, with results only published for a single object, the archetypical high-mass loss asymptotic giant branch (AGB) star IRC+10216. Aims: To examine how common 177 GHz HCN maser emission is, we conducted an exploratory survey for this line toward a select sample of carbon-rich asymptotic giant branch stars that are observable from the southern hemisphere. Methods: We used the Atacama Pathfinder Experiment 12 meter submillimeter Telescope (APEX) equipped with a new receiver to simultaneously observe three J = 2 → 1 HCN rotational transitions, the (0, 11c, 0) and (0, 11d, 0) l-doublet components, and the line from the (0,0,0) ground state. Results: The (0, 11c, 0) maser line is detected toward 11 of 13 observed sources, which all show emission in the (0,0,0) transition. In most of the sources, the peak intensity of the (0, 11c, 0) line rivals that of the (0,0,0) line; in two sources, it is even stronger. Except for the object with the highest mass-loss rate, IRC+10216, the (0, 11c, 0) line covers a smaller velocity range than the (0,0,0) line. The (0, 11d, 0) line, which is detected in four of the sources, is much weaker than the other two lines and covers a velocity range that is smaller yet, again except for IRC+10216. Compared to its first detection in 1989, the profile of the (0, 11c, 0) line observed toward IRC+10216 looks very different, and we also appear to see variability in the (0,0,0) line profile (at a much lower degree). Our limited information on temporal variabilitydisfavors a strong correlation of maser and stellar continuum flux

  16. HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Solomon, Philip M.

    updating

    We report systematic HCN J=1-0 (and CO) observations of a sample of 53 infrared (IR) and/or CO-bright and/or luminous galaxies, including seven ultraluminous infrared galaxies, nearly 20 luminous infrared galaxies, and more than a dozen of the nearest normal spiral galaxies. This is the largest and most sensitive HCN survey of galaxies to date. All galaxies observed so far follow the tight correlation between the IR luminosity LIR and the HCN luminosity LHCN initially proposed by Solomon, Downes, & Radford, which is detailed in a companion paper. We also address here the issue of HCN excitation. There is no particularly strong correlation between LHCN and the 12 μm luminosity; in fact, of all the four IRAS bands, the 12 μm luminosity has the weakest correlation with the HCN luminosity. There is also no evidence of stronger HCN emission or a higher ratio of HCN and CO luminosities LHCN/LCO for galaxies with excess 12 μm emission. This result implies that mid-IR radiative pumping, or populating, of the J=1 level of HCN by a mid-IR vibrational transition is not important compared with the collisional excitation by dense molecular hydrogen. Furthermore, large velocity gradient calculations justify the use of HCN J=1-0 emission as a tracer of high-density molecular gas (>~3×104/τcm-3) and give an estimate of the mass of dense molecular gas from HCN observations. Therefore, LHCN may be used as a measure of the total mass of dense molecular gas, and the luminosity ratio LHCN/LCO may indicate the fraction of molecular gas that is dense.

  17. Infrared-Terahertz Double-Resonance Spectroscopy of CH3F and CH 3 Cl at Atmospheric Pressure

    DTIC Science & Technology

    updating

    coincidence with the RQ3(6) rovibrational transition in CH3 35Cl [Fig. 4(b)]. At atmospheric pressure, nine more P -, Q-, and R-branch rovibrational...the double-resonance signatures of all IR-THz pump-probe coincidences at atmospheric pressure for 12CH3F and CH3 35Cl updating/2012/85(5...were calculated using the rotational constants listed in Tables I and II. For CH3F, the standard P - type (J = − 1), Q-type (J = 0), and R-type (J

  18. Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl- attack on CH 3 Cl

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.; York, Darrin M.

    updating

    The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.

  19. Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl- attack on CH 3 Cl .

    PubMed

    Kuechler, Erich R; York, Darrin M

    updating

    The nucleophilic attack of a chloride ion on methyl chloride is an important prototype SN2 reaction in organic chemistry that is known to be sensitive to the effects of the surrounding solvent. Herein, we develop a highly accurate Specific Reaction Parameter (SRP) model based on the Austin Model 1 Hamiltonian for chlorine to study the effects of solvation into an aqueous environment on the reaction mechanism. To accomplish this task, we apply high-level quantum mechanical calculations to study the reaction in the gas phase and combined quantum mechanical/molecular mechanical simulations with TIP3P and TIP4P-ew water models and the resulting free energy profiles are compared with those determined from simulations using other fast semi-empirical quantum models. Both gas phase and solution results with the SRP model agree very well with experiment and provide insight into the specific role of solvent on the reaction coordinate. Overall, the newly parameterized SRP Hamiltonian is able to reproduce both the gas phase and solution phase barriers, suggesting it is an accurate and robust model for simulations in the aqueous phase at greatly reduced computational cost relative to comparably accurate ab initio and density functional models.

  20. Prefrontal Cortex HCN 1 Channels Enable Intrinsic Persistent Neural Firing and Executive Memory Function

    PubMed Central

    Thuault, Sébastien J.; Malleret, Gaël; Constantinople, Christine M.; Nicholls, Russell; Chen, Irene; Zhu, Judy; Panteleyev, Andrey; Vronskaya, Svetlana; Nolan, Matthew F.; Bruno, Randy

    updating

    In many cortical neurons, HCN1 channels are the major contributors to Ih, the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of Ih in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of Ih decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or Ih blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question. PMID:updating

  1. SPATIALLY RESOLVED HCN ABSORPTION FEATURES IN THE CIRCUMNUCLEAR REGION OF NGC 1052

    SciTech Connect

    Sawada-Satoh, Satoko; Roh, Duk-Gyoo; Oh, Se-Jin

    We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s{sup −1}, redshifted by 149 and 212 km s{sup −1} with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 10{sup 15}–10{sup 16} cm{sup −2}, assuming an excitation temperature ofmore » 100–230 K. The absorption features show high optical depth localized on the receding jet side, where the free–free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.« less

  2. Spatially Resolved HCN Absorption Features in the Circumnuclear Region of NGC 1052

    NASA Astrophysics Data System (ADS)

    Sawada-Satoh, Satoko; Roh, Duk-Gyoo; Oh, Se-Jin; Lee, Sang-Sung; Byun, Do-Young; Kameno, Seiji; Yeom, Jae-Hwan; Jung, Dong-Kyu; Kim, Hyo-Ryoung; Hwang, Ju-Yeon

    updating

    We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s-1, redshifted by 149 and 212 km s-1 with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be updating cm-2, assuming an excitation temperature of 100-230 K. The absorption features show high optical depth localized on the receding jet side, where the free-free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.

  3. LOW CONDUCTANCE HCN 1 ION CHANNELS AUGMENT THE FREQUENCY RESPONSE OF ROD AND CONE PHOTORECEPTORS

    PubMed Central

    Barrow, Andrew J.; Wu, Samuel M.

    updating

    Hyperpolarization-activated cyclic nucleotide gated (HCN) ion channels are expressed in several tissues throughout the body, including the heart, the CNS, and the retina. HCN channels are found in many neurons in the retina, but their most established role is in generating the hyperpolarization-activated current, Ih, in photoreceptors. This current makes the light response of rod and cone photoreceptors more transient, an effect similar to that of a high-pass filter. A unique property of HCN channels is their small single channel current, which is below the thermal noise threshold of measuring electronics. We use nonstationary fluctuation analysis (NSFA) in the intact retina to estimate the conductance of single HCN channels, revealing a conductance of approximately 650 fS in both rod and cone photoreceptors. We also analyze the properties of HCN channels in salamander rods and cones, from the biophysical to the functional level, showing that HCN1 is the predominant isoform in both cells, and demonstrate how HCN1 channels speed up the light response of both rods and cones under distinct adaptational conditions. We show that in rods and cones, HCN channels increase the natural frequency response of single cells by modifying the photocurrent input, which is limited in its frequency response by the speed of a molecular signaling cascade. In doing so, HCN channels form the first of several systems in the retina that augment the speed of the visual response, allowing an animal to perceive visual stimuli that change more quickly than the underlying photocurrent. PMID:updating

  4. The puzzle of HCN in comets: Is it both a product and a primary species?

    NASA Astrophysics Data System (ADS)

    Mumma, M.; Bonev, B.; Charnley, S.; Cordiner, M.; DiSanti, M.; Gibb, E.; Magee-Sauer, K.; Paganini, L.; Villanueva, G.

    updating

    [external_link offset=1]

    Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular-cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: - HCN is often used as a proxy for water when the dominant species (H_2O) is not available for simultaneous measurement, as at radio wavelengths. If much HCN is sometimes produced in the coma, its adoption as a water proxy could introduce unwanted bias to taxonomies based on composition. - HCN is one of the few volatile carriers of nitrogen accessible to remote sensing, with NH_3 being the dominant nitrile. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. - The stereoisomer HNC is regarded as a product species, thought to result from coma chemistry involving HCN. But, could another reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? - The production rate for CN greatly exceeds the possible production from HCN in some comets, demonstrating the presence of another (more important) precursor of CN radicals in them. - The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets, but in others the infrared rate exceeds the radio rate substantially. Is prompt emission from vibrationally excited HCN responsible? - With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H_2O, CH_3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). We will present the

  5. HCN - A plausible source of purines, pyrimidines and amino acids on the primitive earth

    NASA Technical Reports Server (NTRS)

    Ferris, J.-P.; Joshi, P. C.; Edelson, E. H.; Lawless, J. G.

    updating

    Dilute (0.1 M) solutions of HCN condense to oligomers at pH 9.2, and hydrolysis of these oligomers yields 4,5-dihydroxypyrimidine, orotic acid, 5-hydroxyuracil, adenine, 4-aminoimidazole-5-carboxamide, and amino acids. It is suggested that the three main classes of nitrogen-containing biomolecules - purines, pyrimidines, and amino acids may have originated from HCN on the primitive earth. It is also suggested that the presence of orotic acid and 4-aminoimidazole-5-carboxamide might indicate that contemporary biosynthetic pathways for nucleotides evolved from the compounds released on hydrolysis of HCN oligomers.

  6. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    updating

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  7. HCN and HCO(+) images of the photodissociation region in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Youngowl, Rolaine C.; Meixner, Margaret; Tielens, Alexander G. G. M.; Tauber, Jan A.

    updating

    We present preliminary millimeter-wavelength images of the photodissociation region (PDR) in the Orion Bar, observed with the Berkeley- Illinois-Maryland array (BIMA). These new BIMA observations have attained 5 arc sec resolution in the J=l-O emission lines of HCO+ (formyl ion) and HCN (hydrogen cyanide). The results are compared with previous observations of the J=1-0 transition lines of (13)CO. We find that the HCO+ and HCN have different spatial distributions. HCN appears to lie primarily inside dense clumps of gas, which are defined by areas of intense (13)CO emission. However, the HCO+ emission appears to be only loosely associated with the surfaces of the gas clumps. We suggest that HCO+ abundance is enhanced by the presence of vibrationally excited H2 on the surfaces of dense clumps, and that the HCN abundance is attenuated by photo destruction outside the cores of dense clumps of gas.

  8. HCN 4 mutation as a molecular explanation on patients with bradycardia and non-compaction cardiomyopathy.

    PubMed

    Millat, Gilles; Janin, Alexandre; de Tauriac, Olivier; Roux, Antoine; Dauphin, Claire

    updating

    A very recent study suggested that HCN4 mutations could be associated with sinusal bradycardia and myocardial non compaction. A French family with 3 affected sisters presenting the same clinical phenotype (sinus bradycardia in combination with non compaction cardiomyopathy (NCCM)) have benefited both from a systematic cardiovascular exploration and molecular investigations. The molecular analysis, performed by NGS sequencing, led to identify only one likely-disease causing variation: p.Gly482Arg on HCN4 gene. Our results confirm the genetic evidence for the involvement of the HCN4 mutations in the combined bradycardia-NCCM phenotype and illustrates that, in front of this combined clinical phenotype, HCN4 mutations has to be suspected. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. HCN 1 channels in cerebellar Purkinje cells promote late stages of learning and constrain synaptic inhibition

    PubMed Central

    Rinaldi, Arianna; Defterali, Cagla; Mialot, Antoine; Garden, Derek L F; Beraneck, Mathieu; Nolan, Matthew F

    updating

    Neural computations rely on ion channels that modify neuronal responses to synaptic inputs. While single cell recordings suggest diverse and neurone type-specific computational functions for HCN1 channels, their behavioural roles in any single neurone type are not clear. Using a battery of behavioural assays, including analysis of motor learning in vestibulo-ocular reflex and rotarod tests, we find that deletion of HCN1 channels from cerebellar Purkinje cells selectively impairs late stages of motor learning. Because deletion of HCN1 modifies only a subset of behaviours involving Purkinje cells, we asked whether the channel also has functional specificity at a cellular level. We find that HCN1 channels in cerebellar Purkinje cells reduce the duration of inhibitory synaptic responses but, in the absence of membrane hyperpolarization, do not affect responses to excitatory inputs. Our results indicate that manipulation of subthreshold computation in a single neurone type causes specific modifications to behaviour. PMID:updating

  10. Augmented Currents of an HCN 2 Variant in Patients with Febrile Seizure Syndromes

    PubMed Central

    Dibbens, Leanne M.; Reid, Christopher A.; Hodgson, Bree; Thomas, Evan A.; Phillips, Alison M.; Gazina, Elena; Cromer, Brett A.; Clarke, Alison L.; Baram, Tallie Z.; Scheffer, Ingrid E.; Berkovic, Samuel F.; Petrou, Steven

    updating

    The genetic architecture of common epilepsies is largely unknown. HCNs are excellent epilepsy candidate genes because of their fundamental neurophysiological roles. Screening in subjects with febrile seizures and genetic epilepsy with febrile seizures plus revealed that 2.4% carried a common triple proline deletion (delPPP) in HCN2 that was seen in only 0.2% of blood bank controls. Currents generated by mutant HCN2 channels were ~35% larger than those of controls; an effect revealed using automated electrophysiology and an appropriately powered sample size. This is the first association of HCN2 and familial epilepsy, demonstrating gain of function of HCN2 current as a potential contributor to polygenic epilepsy. PMID:updating

  11. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.

    PubMed

    Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R

    updating

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors updating/15/updating$15.00/0.

  12. Distribution and Function of HCN Channels in the Apical Dendritic Tuft of Neocortical Pyramidal Neurons

    PubMed Central

    Harnett, Mark T.; Magee, Jeffrey C.

    updating

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. PMID:updating

  13. De novo mutations in HCN 1 cause early infantile epileptic encephalopathy.

    PubMed

    Nava, Caroline; Dalle, Carine; Rastetter, Agnès; Striano, Pasquale; de Kovel, Carolien G F; Nabbout, Rima; Cancès, Claude; Ville, Dorothée; Brilstra, Eva H; Gobbi, Giuseppe; Raffo, Emmanuel; Bouteiller, Delphine; Marie, Yannick; Trouillard, Oriane; Robbiano, Angela; Keren, Boris; Agher, Dahbia; Roze, Emmanuel; Lesage, Suzanne; Nicolas, Aude; Brice, Alexis; Baulac, Michel; Vogt, Cornelia; El Hajj, Nady; Schneider, Eberhard; Suls, Arvid; Weckhuysen, Sarah; Gormley, Padhraig; Lehesjoki, Anna-Elina; De Jonghe, Peter; Helbig, Ingo; Baulac, Stéphanie; Zara, Federico; Koeleman, Bobby P C; Haaf, Thomas; LeGuern, Eric; Depienne, Christel

    updating

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.

  14. Detection of Macromolecular Fractions in HCN Polymers Using Electrophoretic and Ultrafiltration Techniques.

    PubMed

    Marín-Yaseli, Margarita R; Cid, Cristina; Yagüe, Ana I; Ruiz-Bermejo, Marta

    updating

    Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one-dimensional electrophoresis) but also their different isoelectric points (two-dimensional electrophoresis, 2-DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine-SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2-DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  15. Helium Atom Scattering from C 2 H 6 , F2HCCH3, F3CCH2F and C2F6 in Crossed Molecular Beams

    NASA Astrophysics Data System (ADS)

    Hammer, Markus; Seidel, Wolfhart

    updating

    Rotationally unresolved differential cross sections were measured in crossed molecular beam experiments by scattering Helium atoms from Ethane, 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane and Hexafluoroethane. The damping of observed diffraction oscillations was used to extract anisotropic interaction potentials for these scattering systems applying the infinite order sudden approximation (IOSA). Binary macroscopic parameters such as second heterogeneous virial coefficients and the coefficients of diffusion and viscosity were computed from these potentials and compared to results from macroscopic experiments.

  16. VizieR Online Data Catalog: IR absorbance spectra of CH4, C 2 H 6 , C3H8 & C4H10 (Turner+, 2018)

    NASA Astrophysics Data System (ADS)

    Turner, A. M.; Abplanalp, M. J.; Blair, T. J.; Dayuha, R.; Kaiser, R. I.

    updating

    In situ infrared data were collected by a Nicolet 6700 Fourier Transform Infrared Spectrometer at 4cm-1 resolution throughout the irradiation and temperature programmed desorption (TPD). (2 data files).

  17. Density function theoretical study on the complex involved in Th atom-activated C-C bond in C 2 H 6

    NASA Astrophysics Data System (ADS)

    Qing-Qing, Wang; Peng, Li; Tao, Gao; Hong-Yan, Wang; Bing-Yun, Ao

    updating

    Density functional theory (DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C-C bond activation. A comprehensive description of the reaction mechanisms leading to two different reaction products is presented. We report a complete exploration of the potential energy surfaces by taking into consideration different spin states. In addition, the intermediate and transition states along the reaction paths are characterized. Total, partial, and overlap population density of state diagrams and analyses are also presented. Furthermore, the natures of the chemical bonding of intermediate and transition states are studied by using topological method combined with electron localization function (ELF) and Mayer bond order. Infrared spectrum (IR) is obtained and further discussed based on the optimized geometries. Project supported by the National Natural Science Foundation of China (Grant Nos. updating, updating, and updating).

  18. Full-dimensional analytical potential energy surface describing the gas-phase Cl + C 2 H 6 reaction and kinetics study of rate constants and kinetic isotope effects.

    PubMed

    Rangel, Cipriano; Espinosa-Garcia, Joaquin

    updating

    Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol -1 , with a low height barrier, 2.44 kcal mol -1 , and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range updating K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl( 2 P 1/2 ) state, have relative importance, but do not explain the whole discrepancy. Finally, the activation energy and the kinetics isotope effects reproduce the experimental information.

  19. Energetic investigation of the adsorption process of CH4, C 2 H 6 and N2 on activated carbon: Numerical and statistical physics treatment

    NASA Astrophysics Data System (ADS)

    Ben Torkia, Yosra; Ben Yahia, Manel; Khalfaoui, Mohamed; Al-Muhtaseb, Shaheen A.; Ben Lamine, Abdelmottaleb

    updating

    The adsorption energy distribution (AED) function of a commercial activated carbon (BDH-activated carbon) was investigated. For this purpose, the integral equation is derived by using a purely analytical statistical physics treatment. The description of the heterogeneity of the adsorbent is significantly clarified by defining the parameter N(E). This parameter represents the energetic density of the spatial density of the effectively occupied sites. To solve the integral equation, a numerical method was used based on an adequate algorithm. The Langmuir model was adopted as a local adsorption isotherm. This model is developed by using the grand canonical ensemble, which allows defining the physico-chemical parameters involved in the adsorption process. The AED function is estimated by a normal Gaussian function. This method is applied to the adsorption isotherms of nitrogen, methane and ethane at different temperatures. The development of the AED using a statistical physics treatment provides an explanation of the gas molecules behaviour during the adsorption process and gives new physical interpretations at microscopic levels.

  20. Quasi-Classical Trajectory Dynamics Study of the Cl(2P) + C 2 H 6 → HCl(v,j) + C2H5 Reaction. Comparison with Experiment.

    PubMed

    Espinosa-Garcia, Joaquin; Martinez-Nuñez, Emilio; Rangel, Cipriano

    updating

    To understand and simulate the dynamics behavior of the title reaction, QCT calculations were performed on a recently developed global analytical potential energy surface, PES-2017. These calculations combine the classical description of the dynamics with pseudoquantization in the reactants and products to perform a theoretical/experimental comparison on the same footing. Thus, in the products a series of constraints are included to analyze the HCl(v = 0,j) product, which is experimentally detected. At collision energies of 5.5 and 6.7 kcal mol -1 the largest fraction of available energy is deposited as translation, 67%, while the ethyl radical shows significant internal energy, 27%, and so it does not act as a spectator of the reaction, thus reproducing recent experimental evidence. The HCl(v=0, j) rotational distribution is cold, peaking at j = 2, only one unit hotter than experiment, which represents an error of 0.12 kcal mol -1 . At a collision energy of 5.5 kcal mol -1 product translational distribution is slightly hotter than experiment, but at 6.7 kcal mol -1 agreement with recent experiments is practically quantitative, suggesting that the first experiments should be revised. In addition, we observe that the HCl(v=0, j) scattering distribution shifts from isotropic at low values of j to backward at high values of j, which is in agreement with experimental data. Finally, no evidence was found for the "chattering" mechanism suggested to explain the low translational energy of the HCl product in the backward scattering region. In sum, agreement with experiments of a series of sensible dynamic properties permits us to be optimistic on the quality and accuracy of the theoretical tools used in the present work, QCT and PES-2017.

  1. Reactions of Fe+ and FeO+ with C2H2, C2H4, and C 2 H 6 : Temperature-Dependent Kinetics

    DTIC Science & Technology

    updating

    studies to lead to the development of efficient quantum chemical calculation methods by offering benchmarks for testing and refinement. Due to the...EXPERIMENTAL METHODS All measurements were performed on the Air Force Research Laboratory’s variable temperature selected ion flow tube (VT- SIFT) instrument...correct within error, indicating that they are in the low-pressure limit,52,53 and the termolecular rate constant is obtained from the slope. In contrast

  2. The rotational excitation of the HCN and HNC molecules by H2 revisited

    NASA Astrophysics Data System (ADS)

    Hernández Vera, M.; Lique, F.; Dumouchel, F.; Hily-Blant, P.; Faure, A.

    updating

    HCN and HNC are two fundamental molecules in the dense interstellar medium. The HNC/HCN abundance ratio depends on the kinetic temperature and can be used to explore the physical and chemical conditions of star-forming regions. Modelling of HCN and HNC emissions from interstellar clouds requires to model their collisional and radiative excitations. We report the calculation of the HCN and HNC excitation rate coefficients among the first 26 rotational levels due to H2 collisions, for temperatures ranging from 5 to 500 K, using the exact close coupling and the approximate coupled states methods. We found a propensity for even Δj transitions in the case of HCN-para-H2 collisions, whereas a propensity for odd Δj transitions is observed in the case of HNC-para-H2 collisions. For collisions with ortho-H2, both molecules show a propensity rule favouring transitions with odd Δj. The rate coefficients for HCN and HNC differ significantly, showing clearly that the collisional excitation of the two isomers is different, especially for para-H2. We also evaluate the impact of these new data on the astrophysical modelling through radiative transfer calculations. It is shown that specific calculations have to be performed for the two isomers and that the HNC/HCN abundance ratio in cold molecular clouds cannot be estimated from line intensity ratio. Finally, observations of the two isotopologues H13CN and HN13C towards a sample of prestellar cores are presented, and the larger excitation temperature of HN13C is well reproduced by our excitation model.

  3. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons.

    PubMed

    Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T

    updating

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZDupdatingμM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Rotational excitation of HCN by para- and ortho-H{sub 2}

    SciTech Connect

    Vera, Mario Hernández, E-mail: nguyenquanghuy@gmail.com; InSTEC, Quinta de Los Molinos, Plaza, La Habana 10600; Kalugina, Yulia

    Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H{sub 2}( j = 0, 2) and ortho-H{sub 2}( j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm{sup −1}. The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K.more » The HCN rate coefficients are strongly dependent on the rotational level of the H{sub 2} molecule. In particular, the rate coefficients for collisions with para-H{sub 2}( j = 0) are significantly lower than those for collisions with ortho-H{sub 2}( j = 1) and para-H{sub 2}( j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H{sub 2}( j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H{sub 2}( j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H{sub 2}( j = 0) rate coefficients. Significant differences were found due the inclusion of the H{sub 2} rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.« less

  5. Synthesis of HCN and HNC in Ion-Irradiated N2-Rich Ices

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Hudson, R. L.; Ferrante, R. F.

    updating

    Near-IR observations reveal that N2-rich ice containing small amounts of CH4, and CO, is abundant on the surfaces of Triton, a moon of Neptune, and Pluto. N2-rich ices may also exist, in interstellar environments. To investigate the radiation chemistry of such ices we performed a systematic IR study of ion-irradiated Nz-rich mixtures containing CH4 and CO. Irradiation of N2 + CH4 mixtures at 12 K, showed that HCN, HNC, diazomethane, and NH3 were produced. We also found that UV photolysis of these ices produced detectable HCN and HNC. Intrinsic band strengths, A(HCN) and A(HNC), were measured and used to calculate yields of HCN and HNC. Similar results were obtained on irradiation of N2 + CH4 + CO ices at 12 K, with the main difference being the formation of HNCO. In all cases we observed changes on warming. For example, when the temperature of irradiated Nz + CH4 + CO was raised from 12 to 30 K, HCN, HNC, and HNCO reacted with NH3, and OCN-, CN-, N3-, and NH4+ were produced. These ions, appearing at 30 K, are expected to form and survive on the surfaces of Triton, Pluto, and interstellar grains. Our results have astrobiological implications since some of these radiation products are involved in the syntheses of biomolecules such as amino acids and peptides.

  6. Association Reactions at Low Pressure: 5. The CH(sub 3)+/HCN System. A Final Word?

    NASA Technical Reports Server (NTRS)

    Anicich, V.; Sen, A.; Huntress, W.; McEwan, M.

    updating

    The reaction of the methyl cation with hydrogen cyanide is revisited. We have confidence that we have resolved a long standing apparent contradiction of experimental results. A literature history is presented along with one new experiment and a reexamination of an old experiment. In this present work it is shown that all of the previous studies had made consistent observations. Yet, each of the previous studies failed to observe all of the information present. The methyl cation does react with HCN by radiative association, a fact which had been in doubt. The product ions formed in the two-body and three-body processes react differently with HCN. The collisionally stabilized association product formed by a three-body mechanism does not react with HCN and is readily detected in the experiments. The radiatively stabilized association product, formed by a slow two-body reaction, is not detected because it reacts with HCN by a fast proton transfer reaction forming the protonated HCN ion.

  7. Retrieval of haze properties and HCN concentrations from the three-micron spectrum of Titan

    NASA Astrophysics Data System (ADS)

    Kim, Sang J.; Lee, D. W.; Sim, C. K.; Seon, K. I.; Courtin, R.; Geballe, T. R.

    updating

    The 3 μm spectrum of Titan contains line emission and absorption as well as a significant haze continuum. The line emission has been previously analyzed in the literature, but that analysis has not properly included the influence of haze on the line emission. We report a new analysis of the 3 μm HCN emission spectrum using radiative transfer equations that include scattering and absorption by molecules and haze particles at altitudes lower than 500 km, where the influence of haze on the emergent spectrum becomes significant. Taking advantage of the dominance of resonant single scattering in the HCN ν3 fundamental and of the moderate haze optical thickness of the atmosphere around 3 μm, we adopt single dust and molecular scattering and present a formulation for the radiative transfer process. We evaluate the quantitative influence of haze scattering on the emission line intensities, and derive vertically-resolved single scattering albedos of the haze from model fits. We also present the resulting concentrations of HCN for altitudes below 500 km, where we find that the haze scattering significantly influences the retrieval of the concentrations of HCN. We conclude that the formulation we present is useful for the analysis of the HCN line emission from Titan and other similar hazy planetary or celestial objects.

  8. HCN 2 channels in the ventral tegmental area regulate behavioral responses to chronic stress

    PubMed Central

    Zhong, Peng; Vickstrom, Casey R; Liu, Xiaojie; Hu, Ying; Yu, Laikang; Yu, Han-Gang

    updating

    Dopamine neurons in the ventral tegmental area (VTA) are powerful regulators of depression-related behavior. Dopamine neuron activity is altered in chronic stress-based models of depression, but the underlying mechanisms remain incompletely understood. Here, we show that mice subject to chronic mild unpredictable stress (CMS) exhibit anxiety- and depressive-like behavior, which was associated with decreased VTA dopamine neuron firing in vivo and ex vivo. Dopamine neuron firing is governed by voltage-gated ion channels, in particular hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Following CMS, HCN-mediated currents were decreased in nucleus accumbens-projecting VTA dopamine neurons. Furthermore, shRNA-mediated HCN2 knockdown in the VTA was sufficient to recapitulate CMS-induced depressive- and anxiety-like behavior in stress-naïve mice, whereas VTA HCN2 overexpression largely prevented CMS-induced behavioral deficits. Together, these results reveal a critical role for HCN2 in regulating VTA dopamine neuronal activity and depressive-related behaviors. PMID:updating

  9. Loss of HCN 1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia.

    PubMed

    Schön, Christian; Asteriti, Sabrina; Koch, Susanne; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Herms, Jochen; Seeliger, Mathias W; Cangiano, Lorenzo; Biel, Martin; Michalakis, Stylianos

    updating

    Most inherited blinding diseases are characterized by compromised retinal function and progressive degeneration of photoreceptors. However, the factors that affect the life span of photoreceptors in such degenerative retinal diseases are rather poorly understood. Here, we explore the role of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) in this context. HCN1 is known to adjust retinal function under mesopic conditions, and although it is expressed at high levels in rod and cone photoreceptor inner segments, no association with any retinal disorder has yet been found. We investigated the effects of an additional genetic deletion of HCN1 on the function and survival of photoreceptors in a mouse model of CNGB1-linked retinitis pigmentosa (RP). We found that the absence of HCN1 in Cngb1 knockout (KO) mice exacerbated photoreceptor degeneration. The deleterious effect was reduced by expression of HCN1 using a viral vector. Moreover, pharmacological inhibition of HCN1 also enhanced rod degeneration in Cngb1 KO mice. Patch-clamp recordings revealed that the membrane potentials of Cngb1 KO and Cngb1/Hcn1 double-KO rods were both significantly depolarized. We also found evidence for altered calcium homeostasis and increased activation of the protease calpain in Cngb1/Hcn1 double-KO mice. Finally, the deletion of HCN1 also exacerbated degeneration of cone photoreceptors in a mouse model of CNGA3-linked achromatopsia. Our results identify HCN1 as a major modifier of photoreceptor degeneration and suggest that pharmacological inhibition of HCN channels may enhance disease progression in RP and achromatopsia patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: nguyenquanghuy@gmail.com

  10. ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER

    SciTech Connect

    Mills, Elisabeth A. C.; Battersby, Cara, E-mail: nguyenquanghuy@gmail.com

    We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources ofmore » scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 10{sup 22} cm{sup −2}, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.« less

  11. Relevance of HCN 2-expressing human mesenchymal stem cells for the generation of biological pacemakers.

    PubMed

    Bruzauskaite, Ieva; Bironaite, Daiva; Bagdonas, Edvardas; Skeberdis, Vytenis Arvydas; Denkovskij, Jaroslav; Tamulevicius, Tomas; Uvarovas, Valentinas; Bernotiene, Eiva

    updating

    The transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. The mechanism appears to be the generation of the ion current (If) by the HCN2-expressing hMSCs. However, it is not clear how the transfection process and/or the HCN2 gene affect the growth functions of the hMSCs. Therefore, we investigated survival, proliferation, cell cycle, and growth on a Kapton® scaffold of HCN2-expressing hMSCs. hMSCs were isolated from the bone marrow of healthy volunteers applying a selective cell adhesion procedure and were identified by their expression of specific surface markers. Cells from passages 2-3 were transfected by electroporation using commercial transfection kits and a pIRES2-EGFP vector carrying the pacemaker gene, mouse HCN2 (mHCN2). Transfection efficiency was confirmed by enhanced green fluorescent protein (EGFP) fluorescence, quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). After hMSCs were transfected, their viability, proliferation, If generation, apoptosis, cell cycle, and expression of transcription factors were measured and compared with non-transfected cells and cells transfected with pIRES2-EGFP vector alone. Intracellular mHCN2 expression after transfection increased from 22.14 to 62.66 ng/mg protein (p HCN2-transfected cells was 82 ± 5 %; they grew stably for more than 3 weeks and induced If current. mHCN2-transfected cells had low mitotic activity (10.4 ± 1.24 % in G2/M and 83.6 ± 2.5 % in G1 phases) as compared with non-transfected cells (52-53 % in G2/M and 31-35 % in G1 phases). Transfected cells showed increased activation of nine cell cycle-regulating transcription factors: the most prominent upregulation was of AMP-dependent transcription factor ATF3 (7

  12. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    updating

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  13. Submillimeter-HCN Diagram for Energy Diagnostics in the Centers of Galaxies

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kohno, Kotaro; Aalto, Susanne; Espada, Daniel; Fathi, Kambiz; Harada, Nanase; Hatsukade, Bunyo; Hsieh, Pei-Ying; Imanishi, Masatoshi; Krips, Melanie; Martín, Sergio; Matsushita, Satoki; Meier, David S.; Nakai, Naomasa; Nakanishi, Kouichiro; Schinnerer, Eva; Sheth, Kartik; Terashima, Yuichi; Turner, Jean L.

    updating

    Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4-3)/HCO+(4-3) and/or HCN(4-3)/CS(7-6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of the high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO+ and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even ≳10 are a plausible explanation for the submillimeter HCN enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral-neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.

  14. HCN Production via Impact Ejecta Reentry During the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. Jay

    updating

    Major impact events have shaped the Earth as we know it. The Late Heavy Bombardment is of particular interest because it immediately precedes the first evidence of life. The reentry of impact ejecta creates numerous chemical by-products, including biotic precursors such as HCN. This work examines the production of HCN during the Late Heavy Bombardment in more detail. We stochastically simulate the range of impacts on the early Earth and use models developed from existing studies to predict the corresponding ejecta properties. Using multiphase flow methods and finite-rate equilibrium chemistry, we then find the HCN production due to the resulting atmospheric heating. We use Direct Simulation Monte Carlo to develop a correction factor to account for increased yields due to thermochemical nonequilibrium. We then model 1-D atmospheric turbulent diffusion to find the time accurate transport of HCN to lower altitudes and ultimately surface water. Existing works estimate the necessary HCN molarity threshold to promote polymerization that is 0.01 M. For a mixing depth of 100 m, we find that the Late Heavy Bombardment will produce at least one impact event above this threshold with probability 24.1% for an oxidized atmosphere and 56.3% for a partially reduced atmosphere. For a mixing depth of 10 m, the probability is 79.5% for an oxidized atmosphere and 96.9% for a partially reduced atmosphere. Therefore, Late Heavy Bombardment impact ejecta is likely an HCN source sufficient for polymerization in shallow bodies of water, particularly if the atmosphere were in a partially reduced state.

  15. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Marín-Yaseli, Margarita R.; Moreno, Miguel; de la Fuente, José L.; Briones, Carlos; Ruiz-Bermejo, Marta

    updating

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH4CN and NaCN, at middle temperatures between 4 and 38 °C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH4CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study.

  16. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy.

    PubMed

    Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta

    updating

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH 4 CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH 4 CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Physics and Chemistry of Small Translucent Molecular Clouds. VIII. HCN and HNC

    NASA Astrophysics Data System (ADS)

    Turner, B. E.; Pirogov, L.; Minh, Y. C.

    updating

    We have conducted a survey of HCN and HNC (two rotational transitions each) in our standard sample of 11 cirrus cores and 27 Clemens-Barvainis translucent cores whose structures and chemistry have been studied earlier in this series. Both species are seen in all 38 objects. HCNH+ has been searched in three objects. These results are modeled in terms of our previous hydrostatic equilibrium and n ~ r-α structures together with other chemical and physical properties derived earlier. A detailed program has been written to handle the complex radiative transfer of the hyperfine splitting (hfs) of HCN. It is shown that serious errors are made in deriving HCN abundances by methods that ignore the hfs. Both HCN and HNC abundances are high, typically 1(-8) in most sources. The chemically important ratio HCN/HNC is found to be ~2.5 if these species are spatially centrally peaked and ~6 if not. Both species abundances increase monotonically with increasing extinction in the 1.2-2.7 mag range (edge to center), thus displaying the same characteristic transition between diffuse and dense cloud chemistry as do most other species we have studied. HCN/HNC decreases with increasing extinction to a value of 1.3 at Av0 ~ 10, approaching the expected value of 1.0 for dense clouds. Two types of ion-molecule chemistry models have been carried out: a full model using the Standard Model rate file and comprising 409 species (by Lee and Herbst), and a simplified model comprising 21 nitrogen-bearing species for conditions relevant to translucent clouds. Good agreement between observations and chemistry models is achieved throughout the translucent extinction range. Important conclusions are that (1) neutral-neutral reactions such as N + CH2 dominate the chemistry of HCN; (2) low ion-polar reaction rates are strongly favored over high ones; (3) the reaction C+ + NH3 --> H2NC+ --> HNC is unimportant, thus largely uncoupling the CN and NH chemistries; (4) the ratio HCN/HNC is not a particularly

  18. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN 1/HCN 2 expression in hippocampal CA1 region.

    PubMed

    Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun

    updating

    Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN 1 Channels in Photoreceptors.

    PubMed

    Pan, Yuan; Laird, Joseph G; Yamaguchi, David M; Baker, Sheila A

    updating

    Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.

  20. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN 1 Channels in Photoreceptors

    PubMed Central

    Pan, Yuan; Laird, Joseph G.; Yamaguchi, David M.; Baker, Sheila A.

    updating

    Purpose. Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. Methods. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. Results. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. Conclusions. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane. PMID:updating

  1. Structural basis for modulation and agonist specificity of HCN pacemaker channels.

    PubMed

    Zagotta, William N; Olivier, Nelson B; Black, Kevin D; Young, Edgar C; Olson, Rich; Gouaux, Eric

    updating

    The family of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels are crucial for a range of electrical signalling, including cardiac and neuronal pacemaker activity, setting resting membrane electrical properties and dendritic integration. These nonselective cation channels, underlying the I(f), I(h) and I(q) currents of heart and nerve cells, are activated by membrane hyperpolarization and modulated by the binding of cyclic nucleotides such as cAMP and cGMP. The cAMP-mediated enhancement of channel activity is largely responsible for the increase in heart rate caused by beta-adrenergic agonists. Here we have investigated the mechanism underlying this modulation by studying a carboxy-terminal fragment of HCN2 containing the cyclic nucleotide-binding domain (CNBD) and the C-linker region that connects the CNBD to the pore. X-ray crystallographic structures of this C-terminal fragment bound to cAMP or cGMP, together with equilibrium sedimentation analysis, identify a tetramerization domain and the mechanism for cyclic nucleotide specificity, and suggest a model for ligand-dependent channel modulation. On the basis of amino acid sequence similarity to HCN channels, the cyclic nucleotide-gated, and eag- and KAT1-related families of channels are probably related to HCN channels in structure and mechanism.

  2. Photodissociation of HCN and HNC isomers in the 7-10 eV energy range

    SciTech Connect

    Chenel, Aurelie; Roncero, Octavio, E-mail: nguyenquanghuy@gmail.com; Aguado, Alfredo

    updating

    The ultraviolet photoabsorption spectra of the HCN and HNC isomers have been simulated in the 7-10 eV photon energy range. For this purpose, the three-dimensional adiabatic potential energy surfaces of the 7 lowest electronic states, and the corresponding transition dipole moments, have been calculated, at multireference configuration interaction level. The spectra are calculated with a quantum wave packet method on these adiabatic potential energy surfaces. The spectra for the 3 lower excited states, the dissociative electronic states, correspond essentially to predissociation peaks, most of them through tunneling on the same adiabatic state. The 3 higher electronic states are bound, hereaftermore » electronic bound states, and their spectra consist of delta lines, in the adiabatic approximation. The radiative lifetime towards the ground electronic states of these bound states has been calculated, being longer than 10 ns in all cases, much longer that the characteristic predissociation lifetimes. The spectra of HCN is compared with the available experimental and previous theoretical simulations, while in the case of HNC there are no previous studies to our knowledge. The spectrum for HNC is considerably more intense than that of HCN in the 7-10 eV photon energy range, which points to a higher photodissociation rate for HNC, compared to HCN, in astrophysical environments illuminated by ultraviolet radiation.« less

  3. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    NASA Astrophysics Data System (ADS)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    updating

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS updating, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states

  4. The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type

    NASA Astrophysics Data System (ADS)

    Schöier, F. L.; Ramstedt, S.; Olofsson, H.; Lindqvist, M.; Bieging, J. H.; Marvel, K. B.

    updating

    Aims: A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of asymptotic giant branch (AGB) stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. Methods: In order to constrain the circumstellar HCN abundance distribution a detailed non-local thermodynamic equilibrium (LTE) excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. Results: The median values for the derived abundances of HCN (with respect to H2) are 3 × 10-5, 7 × 10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. Conclusions: We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars. This publication is based on data

  5. Hcn 1 Is a Tremorgenic Genetic Component in a Rat Model of Essential Tremor

    PubMed Central

    Ohno, Yukihiro; Shimizu, Saki; Tatara, Ayaka; Imaoku, Takuji; Ishii, Takahiro; Sasa, Masashi; Serikawa, Tadao; Kuramoto, Takashi

    updating

    Genetic factors are thought to play a major role in the etiology of essential tremor (ET); however, few genetic changes that induce ET have been identified to date. In the present study, to find genes responsible for the development of ET, we employed a rat model system consisting of a tremulous mutant strain, TRM/Kyo (TRM), and its substrain TRMR/Kyo (TRMR). The TRM rat is homozygous for the tremor (tm) mutation and shows spontaneous tremors resembling human ET. The TRMR rat also carries a homozygous tm mutation but shows no tremor, leading us to hypothesize that TRM rats carry one or more genes implicated in the development of ET in addition to the tm mutation. We used a positional cloning approach and found a missense mutation (c. 1061 C>T, p. A354V) in the hyperpolarization-activated cyclic nucleotide-gated 1 channel (Hcn1) gene. The A354V HCN1 failed to conduct hyperpolarization-activated currents in vitro, implicating it as a loss-of-function mutation. Blocking HCN1 channels with ZD7288 in vivo evoked kinetic tremors in nontremulous TRMR rats. We also found neuronal activation of the inferior olive (IO) in both ZD7288-treated TRMR and non-treated TRM rats and a reduced incidence of tremor in the IO-lesioned TRM rats, suggesting a critical role of the IO in tremorgenesis. A rat strain carrying the A354V mutation alone on a genetic background identical to that of the TRM rats showed no tremor. Together, these data indicate that body tremors emerge when the two mutant loci, tm and Hcn1A354V, are combined in a rat model of ET. In this model, HCN1 channels play an important role in the tremorgenesis of ET. We propose that oligogenic, most probably digenic, inheritance is responsible for the genetic heterogeneity of ET. PMID:updating

  6. Endogenous channels in HEK cells and potential roles in HCN ionic current measurements.

    PubMed

    Varghese, Anthony; Tenbroek, Erica M; Coles, James; Sigg, Daniel C

    updating

    A transformed line of human embryonic kidney epithelial cells (HEK 293) is commonly used as an expression system for exogenous ion channel genes. Previously, it has been shown that these cells contain mRNAs for a variety of ion channels. Expression of some of these genes has been confirmed at the protein level. Patch-clamp electrophysiology experiments confirm the presence of multiple ion channels and molecular data agree with pharmacological profiles of identified channels. In this work, we show that endogenous voltage-gated potassium channels in HEK cells are a significant source of outward current at positive potentials. We show that both non-transfected HEK cells and HEK cells transfected with hyperpolarization-activated cyclic-nucleotide gated (HCN) channels have a significant amount of voltage-gated potassium (K(V)) current when certain tail current voltage-clamp protocols are used to assay HCN current activation. Specifically, tail current protocols that use a depolarized holding potential of -40 mV followed by hyperpolarizing pulses (-80 to -140 mV) and then a tail pulse potential of +20 mV indicate K(V) channels undergo closed-state inactivation at the more depolarized holding potential of -40 mV, followed by recovery from inactivation (but no activation) at hyperpolarizing potentials and high amount of activation at the positive tail potential. Our results indicate that pulse protocols with positive tail pulses are inaccurate assays for HCN current in certain HEK cells. Surprisingly, HEK-293 cells were found to contain mRNA for HCN2 and HCN3 although we have not detected a significant and consistent endogenous I(f)-like current in these cells.

  7. Photodissociation Dynamics of Vinyl Cyanide Studied by Chirped-Pulse Millimeter-Wave Spectroscopy of HCN and HNC Products

    NASA Astrophysics Data System (ADS)

    Prozument, Kirill; Shaver, Rachel G.; Baraban, Joshua H.; Park, G. Barratt; Suits, Arthur G.; Muenter, John S.; Field, Robert W.

    updating

    Vinyl cyanide 193 nm photodissociation has been studied using Chirped-Pulse Millimeter-Wave (CPmmW) spectroscopy. J = 0 - 1 transitions of more than 30 vibrationally excited states of the HCN and HNC products have been recorded and assigned within the 7 GHz wide chirp range. Bending excitations of HCN up to v_2 = 14, leading toward the HCN leftrightarrow HNC isomerization transition state, are detected and interpreted in terms of their electric quadrupole, (eQq)_{N}, and rotational, B_v, constants. The photolysis reaction transition states were probed using both normal vinyl cyanide, CH_2=CHCN, and its singly-deuterated isotopologue, CH_2=CDCN. The observed difference in the vibrational population distribution (VPD) obtained from the integrated intensities of the HCN and DCN products from the CH_2=CHCN vs. CH_2=CDCN photolysis reactions, suggests the relative unimportance of the three-center elimination mechanism for HCN production. On the other hand, the similarity in the observed VPD and overall intensities of HCN from CH_2=CHCN and CH_2=CDCN photolysis suggests four-center elimination as the major mechanism leading to the HCN product. Additional J - (J + 1) transitions would be required to characterize both the vibrational and the rotational state distributions of the products, which would permit more complete characterization of the transition state(s). The authors thank the Department of Energy, and KP thanks the ACS Petroleum Research Fund for their support of this work.

  8. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H2

    NASA Astrophysics Data System (ADS)

    Denis-Alpizar, Otoniel; Kalugina, Yulia; Stoecklin, Thierry; Vera, Mario Hernández; Lique, François

    updating

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H2. Ab initio calculations of the HCN-H2 van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN-H2 with the nitrogen pointing towards H2 at an intermolecular separation of 7.20 a0. The corresponding well depth is -195.20 cm-1. A secondary minimum of -183.59 cm-1 was found for a T-shape configuration with the H of HCN pointing to the center of mass of H2. We also determine the rovibrational energy levels of the HCN-para-H2 and HCN-ortho-H2 complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm-1 and 60.26 cm-1, respectively. The calculated ro-vibrational transitions in the HCN-H2 complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.

  9. Sick sinus syndrome with HCN 4 mutations shows early onset and frequent association with atrial fibrillation and left ventricular noncompaction.

    PubMed

    Ishikawa, Taisuke; Ohno, Seiko; Murakami, Takashi; Yoshida, Kentaro; Mishima, Hiroyuki; Fukuoka, Tetsuya; Kimoto, Hiroki; Sakamoto, Risa; Ohkusa, Takafumi; Aiba, Takeshi; Nogami, Akihiko; Sumitomo, Naokata; Shimizu, Wataru; Yoshiura, Koh-Ichiro; Horigome, Hitoshi; Horie, Minoru; Makita, Naomasa

    updating

    Familial sick sinus syndrome (SSS) is often attributable to mutations in genes encoding the cardiac Na channel SCN5A and pacemaker channel HCN4. We previously found that SSS with SCN5A mutations shows early onset of manifestations and male predominance. Despite recent reports on the complications of atrial fibrillation (AF) and left ventricular noncompaction (LVNC) in patients with SSS caused by HCN4 mutations, their overall clinical spectrum remains unknown. The purpose of this study was to investigate the clinical and demographic features of SSS patients carrying HCN4 mutations. We genetically screened 38 unrelated SSS families and functionally analyzed the mutant SCN5A and HCN4 channels by patch clamping. We also evaluated the clinical features of familial SSS by a meta-analysis of 48 SSS probands with mutations in HCN4 (n = 16) and SCN5A (n = 32), including previously reported cases, and 538 sporadic SSS cases. We identified two HCN4 and three SCN5A loss-of-function mutations in our familial SSS cohort. Meta-analysis of HCN4 mutation carriers showed a significantly younger age at diagnosis (39.1 ± 21.7 years) than in sporadic SSS (74.3 ± 0.4 years; P <.001 a="" age="" but="" carriers="" in="" moreover="" mutation="" older="" p=".003)." scn5a="" significantly="" than="" years="">HCN4 mutation carriers were more frequently associated with AF (43.8%) and LVNC (50%) and with older age at pacemaker implantation (43.5 ± 22.1 years) than were SCN5A mutation carriers (17.8 ± 16.5 years; P <.001 sss="" with="">HCN4 mutations may form a distinct SSS subgroup characterized by early clinical manifestation after adolescence and frequent association with AF and LVNC. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. On the HCN and CO 2 abundance and distribution in Jupiter's stratosphere

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Bézard, B.; Strobel, D. F.; Bjoraker, G. L.; Flasar, F. M.; Romani, P. N.

    updating

    Observations of Jupiter by Cassini/CIRS, acquired during the December 2000 flyby, provide the latitudinal distribution of HCN and CO 2 in Jupiter's stratosphere with unprecedented spatial resolution and coverage. Following up on a preliminary study by Kunde et al. [Kunde, V.G., and 41 colleagues, 2004. Science 305, updating], the analysis of these observations leads to two unexpected results (i) the total HCN mass in Jupiter's stratosphere in 2000 was (6.0±1.5)×10 g, i.e., at least three times larger than measured immediately after the Shoemaker-Levy 9 (SL9) impacts in July 1994 and (ii) the latitudinal distributions of HCN and CO 2 are strikingly different: while HCN exhibits a maximum at 45° S and a sharp decrease towards high Southern latitudes, the CO 2 column densities peak over the South Pole. The total CO 2 mass is (2.9±1.2)×10 g. A possible cause for the HCN mass increase is its production from the photolysis of NH 3, although a problem remains because, while millimeter-wave observations clearly indicate that HCN is currently restricted to submillibar ( ˜0.3 mbar) levels, immediate post-impact infrared observations have suggested that most of the ammonia was present in the lower stratosphere near 20 mbar. HCN appears to be a good atmospheric tracer, with negligible chemical losses. Based on 1-dimensional (latitude) transport models, the HCN distribution is best interpreted as resulting from the combination of a sharp decrease (over an order of magnitude in K) of wave-induced eddy mixing poleward of 40° and an equatorward transport with ˜7 cms velocity. The CO 2 distribution was investigated by coupling the transport model with an elementary chemical model, in which CO 2 is produced from the conversion of water originating either from SL9 or from auroral input. The auroral source does not appear adequate to reproduce the CO 2 peak over the South Pole, as required fluxes are unrealistically high and the shape of the CO 2 bulge is not properly matched

  11. HCN (1-0) enhancement in the bar of NGC 2903

    NASA Astrophysics Data System (ADS)

    Leon, S.; Jeyakumar, S.; Pérez-Ramírez, D.; Verdes-Montenegro, L.; Lee, S. W.; Ocaña Flaquer, B.

    updating

    We have mapped the HCN(1-0) emission from two spiral galaxies, NGC 2903 and NGC 3504 to study the gas properties in the bars. The HCN(1-0) emission is detected in the center and along the bar of NGC 2903. The line ratio HCN(1-0)/ 12CO(1-0) ranges from 0.07 to 0.12 with the lowest value in the center. The enhancement of HCN(1-0) emission along the bar indicates a higher fraction of dense molecular gas in the bar than at the center. The mass of dense molecular gas in the center (2.2 × 107 M⊙) is about 6 times lower than that in the bar (1.2 × 108 M⊙). The total star formation rate (SFR) is estimated to be 1.4 M⊙ yr-1, where the SFR at the center is 1.9 times higher than that in the bar. The time scale of consumption of the dense molecular gas in the center is about ~ 3 × 107 yr which is much shorter than that in the bar of about 2 to 10 × 108 yr. The dynamical time scale of inflow of the gas from the bar to the center is shorter than the consumption time scale in the bar, which suggests that the star formation (SF) activity at the center is not deprived of fuel. In the bar, the fraction of dense molecular gas mass relative to the total molecular gas mass is twice as high along the leading edge than along the central axis of the bar. The HCN(1-0) emission has a large velocity dispersion in the bar, which can be attributed partially to the streaming motions indicative of shocks along the bar. In NGC 3504, the HCN(1-0) emission is detected only at the center. The fraction of dense molecular gas mass in the center is about 15%. Comparison of the SFR with the predictions from numerical simulations suggest that NGC 2903 harbors a young type B bar with a strong inflow of gas toward the center whereas NGC 3504 has an older bar and has already passed the phase of inflow of gas toward the center.

  12. Energy yields for hydrogen cyanide and formaldehyde syntheses - The HCN and amino acid concentrations in the primitive ocean

    NASA Technical Reports Server (NTRS)

    Stribling, Roscoe; Miller, Stanley L.

    updating

    Simulated prebiotic atmospheres containing either CH4, CO, or CO2, in addition to N2, H2O, and variable amounts of H2, were subjected to the spark from a high-frequency Tesla coil, and the energy yields for the syntheses of HCN and H2CO were estimated from periodic (every two days) measurements of the compound concentrations. The mixtures with CH4 were found to yield the highest amounts of HCN, whereas the CO mixtures produced the highest yields of H2CO. These results model atmospheric corona discharges. From the yearly energy yields calculated and the corona discharge available on the earth, the yearly production rate of HCN was estimated; using data on the HCN production rates and the experimental rates of decomposition of amino acids through the submarine vents, the steady state amino acid production rate in the primitive ocean was calculated to be about 10 nmoles/sq cm per year.

  13. A search for the millimetre lines of HCN in Comets Wilson 1987 VII and Machholz 1988 XV

    NASA Astrophysics Data System (ADS)

    Crouvisier, J.; Despois, D.; Bockelee-Morvan, D.; Gerard, E.; Paubert, G.; Johansson, L. E. B.; Ekelund, L.; Winnberg, A.; Ge, W.; Irvine, W. M.; Kinzel, W. M.; Schloerb, F. P.

    updating

    The J(1-0) lines of HCN at 89 GHz were searched for in Comet Wilson 1987 VII, with the FCRAO, the SEST and the IRAM radio telescopes between February and June 1987. There was no firm detection, but significant upper limits were obtained, which put severe constraints on the HCN production rate in that comet. A direct comparison with the observations of P/Halley suggests that the HCN abundance relative to water might be smaller in Comet Wilson by at least a factor of two. The J(1-0) and J(3-2) lines of HCN at 89 and 266 GHz were searched for in Comet Machholz 1988 XV when it was close to perihelion at 0.17 AU from the sun. There was no detection. At that moment, the comet was probably no longer active.

  14. Targeting miR-423-5p Reverses Exercise Training–Induced HCN 4 Channel Remodeling and Sinus Bradycardia

    PubMed Central

    D’Souza, Alicia; Pearman, Charles M.; Wang, Yanwen; Nakao, Shu; Logantha, Sunil Jit R.J.; Cox, Charlotte; Bennett, Hayley; Zhang, Yu; Johnsen, Anne Berit; Linscheid, Nora; Poulsen, Pi Camilla; Elliott, Jonathan; Coulson, Jessica; McPhee, Jamie; Robertson, Abigail; da Costa Martins, Paula A.; Kitmitto, Ashraf; Wisløff, Ulrik; Cartwright, Elizabeth J.; Monfredi, Oliver; Lundby, Alicia; Dobrzynski, Halina; Oceandy, Delvac; Morris, Gwilym M.

    updating

    Rationale: Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, If, underlies exercise training–induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. Objective: To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. Methods and Results: As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3′-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and If. Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. Conclusions: HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node

  15. Targeting miR-423-5p Reverses Exercise Training-Induced HCN 4 Channel Remodeling and Sinus Bradycardia.

    PubMed

    D'Souza, Alicia; Pearman, Charles M; Wang, Yanwen; Nakao, Shu; Logantha, Sunil Jit R J; Cox, Charlotte; Bennett, Hayley; Zhang, Yu; Johnsen, Anne Berit; Linscheid, Nora; Poulsen, Pi Camilla; Elliott, Jonathan; Coulson, Jessica; McPhee, Jamie; Robertson, Abigail; da Costa Martins, Paula A; Kitmitto, Ashraf; Wisløff, Ulrik; Cartwright, Elizabeth J; Monfredi, Oliver; Lundby, Alicia; Dobrzynski, Halina; Oceandy, Delvac; Morris, Gwilym M; Boyett, Mark R

    updating

    Downregulation of the pacemaking ion channel, HCN4 (hyperpolarization-activated cyclic nucleotide gated channel 4), and the corresponding ionic current, I f , underlies exercise training-induced sinus bradycardia in rodents. If this occurs in humans, it could explain the increased incidence of bradyarrhythmias in veteran athletes, and it will be important to understand the underlying processes. To test the role of HCN4 in the training-induced bradycardia in human athletes and investigate the role of microRNAs (miRs) in the repression of HCN4. As in rodents, the intrinsic heart rate was significantly lower in human athletes than in nonathletes, and in all subjects, the rate-lowering effect of the HCN selective blocker, ivabradine, was significantly correlated with the intrinsic heart rate, consistent with HCN repression in athletes. Next-generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction in HCN4 3'-untranslated region luciferase reporter activity on cotransfection with precursor miR-423-5p (abolished by mutation of predicted recognition elements). Knockdown of miR-423-5p with anti-miR-423-5p reversed training-induced bradycardia via rescue of HCN4 and I f . Further experiments showed that in the sinus node of swim-trained mice, upregulation of miR-423-5p (intronic miR) and its host gene, NSRP1, is driven by an upregulation of the transcription factor Nkx2.5. HCN remodeling likely occurs in human athletes, as well as in rodent models. miR-423-5p contributes to training-induced bradycardia by targeting HCN4. This work presents the first evidence of miR control of HCN4 and heart rate. miR-423-5p could be a therapeutic target for pathological sinus node dysfunction in veteran athletes. © 2017 The Authors.

  16. Theoretical study of photoacidity of HCN : the effect of complexation with water.

    PubMed

    Muchová, Eva; Spirko, Vladimir; Hobza, Pavel; Nachtigallová, Dana

    updating

    The character of the hydrogen bonding and the excited state proton transfer (ESPT) in the model system HCN...H(2)O is investigated. The PES of the two lowest excited states of the H(2)O...HCN complex was calculated using the CASPT2 method. The nonadiabatic coupling of the two states of the (pi-->pi*) and (pi-->sigma*) character is responsible for the excited state proton/hydrogen transfer. Compared to the ground state, the barrier for this process is significantly smaller. An increased number of water molecules in the complex with cyclic hydrogen-bonded network causes a large blue shift of the state of the (pi-->sigma*) character. The question of the dissociation of the complex in its excited state is also addressed.

  17. Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars

    NASA Technical Reports Server (NTRS)

    Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)

    updating

    Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.

  18. THE HCN /HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    SciTech Connect

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae, E-mail: nguyenquanghuy@gmail.com, E-mail: nguyenquanghuy@gmail.com, E-mail: nguyenquanghuy@gmail.com

    updating

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis showmore » consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.« less

  19. Investigating the Spatial Structure of HCN Emission in Comet C/2012 F6 (Lemmon)

    NASA Astrophysics Data System (ADS)

    Booth, Shawn; Burkhardt, Andrew; Corby, Joanna; Dollhopf, Niklaus; Rawlings, Mark; Remijan, Anthony

    updating

    Comets are of particular interest in the field of Astrochemistry as they can be used as a direct probe of formation chemistry of the Solar System. Originating in the Oort Cloud reservoir, these long period objects experience relatively limited solar influence. The majority of cometary material (water, methane and ammonia ices) has remained in the same state as when it formed. These ices are precursors to more complex molecules which have been shown to form amino acids that are crucial for the development of life. HCN, or hydrogen cyanide, is of particular interest because it can form the nucleobase adenine (C5H5N5). The goals of this project are to map the HCN distribution of Comet C/2012 F6 (Lemmon) and to show the simultaneous observation capabilities of the Atacama Large Millimeter/Submillimeter Array (ALMA), which allows the extraction of 7-m array, 12-m array and single dish observation data. On UT 2013 May 11, Comet Lemmon was observed using ALMA. The Cycle 1 configuration was used with the Band 6 receivers, with a 1.5 GHz range centered on the HCN transition at 265.86 GHz, which gave a spectral resolution of 0.07 km/s. We show that Comet Lemmon has both a compact HCN region (found with the 12-m array) and also an extended component, forming a tail-like structure in the anti-motion direction (found with the 7-m array). We were also able to extract the autocorrelation data (single dish) and show that it is viable. This project was supported and funded by NRAO in conjunction with the National Science Foundation (NSF), with special thanks to the Astronomy Department at University of Virginia.

  20. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    updating

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  1. Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study

    NASA Astrophysics Data System (ADS)

    Habibi-Yangjeh, Aziz; Basharnavaz, Hadi

    updating

    We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of -0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.

  2. HCN 4-Overexpressing Mouse Embryonic Stem Cell-Derived Cardiomyocytes Generate a New Rapid Rhythm in Rats with Bradycardia.

    PubMed

    Saito, Yukihiro; Nakamura, Kazufumi; Yoshida, Masashi; Sugiyama, Hiroki; Takano, Makoto; Nagase, Satoshi; Morita, Hiroshi; Kusano, Kengo F; Ito, Hiroshi

    updating

    A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 10 3 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.

  3. Diode laser absorption measurement and analysis of HCN in atmospheric-pressure, fuel-rich premixed methane/air flames

    SciTech Connect

    Gersen, S.; Mokhov, A.V.; Levinsky, H.B.

    Measurements of HCN in flat, fuel-rich premixed methane/air flames at atmospheric pressure are reported. Quartz-microprobe sampling followed by wavelength modulation absorption spectroscopy with second harmonic detection was used to obtain an overall measurement uncertainty of better than 20% for mole fractions HCN on the order of 10 ppm. The equivalence ratio, {phi}, was varied between 1.3 and 1.5, while the flame temperature was varied independently by changing the mass flux through the burner surface at constant equivalence ratio. Under the conditions of the experiments, the peak mole fractions vary little, in the range of 10-15 ppm. Increasing the flame temperaturemore » by increasing the mass flux had little influence on the peak mole fraction, but accelerated HCN burnout substantially. At high equivalence ratio and low flame temperature, HCN burnout is very slow: at {phi}=1.5, {proportional_to}10ppm HCN is still present 7 mm above the burner surface. Substantial quantitative disagreement is observed between the experimental profiles and those obtained from calculations using GRI-Mech 3.0, with the calculations generally overpredicting the results significantly. Changing the rates of key formation and consumption reactions for HCN can improve the agreement, but only by making unreasonable changes in these rates. Inclusion of reactions describing NCN formation and consumption in the calculations improves the agreement with the measurements considerably. (author)« less

  4. Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function

    PubMed Central

    Saponaro, Andrea; Pauleta, Sofia R.; Cantini, Francesca; Matzapetakis, Manolis; Hammann, Christian; Donadoni, Chiara; Hu, Lei; Thiel, Gerhard; Banci, Lucia; Santoro, Bina; Moroni, Anna

    updating

    cAMP signaling in the brain mediates several higher order neural processes. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels directly bind cAMP through their cytoplasmic cyclic nucleotide binding domain (CNBD), thus playing a unique role in brain function. Neuronal HCN channels are also regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit that antagonizes the effects of cAMP by interacting with the channel CNBD. To unravel the molecular mechanisms underlying the dual regulation of HCN channel activity by cAMP/TRIP8b, we determined the NMR solution structure of the HCN2 channel CNBD in the cAMP-free form and mapped on it the TRIP8b interaction site. We reconstruct here the full conformational changes induced by cAMP binding to the HCN channel CNBD. Our results show that TRIP8b does not compete with cAMP for the same binding region; rather, it exerts its inhibitory action through an allosteric mechanism, preventing the cAMP-induced conformational changes in the HCN channel CNBD. PMID:updating

  5. United States Historical Climatology Network (US HCN ) monthly temperature and precipitation data

    SciTech Connect

    Daniels, R.C.; Boden, T.A.; Easterling, D.R.

    updating

    This document describes a database containing monthly temperature and precipitation data for 1221 stations in the contiguous United States. This network of stations, known as the United States Historical Climatology Network (US HCN), and the resulting database were compiled by the National Climatic Data Center, Asheville, North Carolina. These data represent the best available data from the United States for analyzing long-term climate trends on a regional scale. The data for most stations extend through December 31, 1994, and a majority of the station records are serially complete for at least 80 years. Unlike many data sets that have beenmore » used in past climate studies, these data have been adjusted to remove biases introduced by station moves, instrument changes, time-of-observation differences, and urbanization effects. These monthly data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP includes this document and 27 machine-readable data files consisting of supporting data files, a descriptive file, and computer access codes. This document describes how the stations in the US HCN were selected and how the data were processed, defines limitations and restrictions of the data, describes the format and contents of the magnetic media, and provides reprints of literature that discuss the editing and adjustment techniques used in the US HCN.« less

  6. A NOVEL MUTATION IN THE HCN 4 GENE CAUSES SYMPTOMATIC SINUS BRADYCARDIA IN MOROCCAN JEWS

    PubMed Central

    Laish-Farkash, Avishag; Brass, Dovrat; Marek-Yagel, Dina; Pras, Elon; Dascal, Nathan; Antzelevitch, Charles; Nof, Eyal; Reznik, Haya; Eldar, Michael; Glikson, Michael; Luria, David

    updating

    Objectives To conduct a clinical, genetic and functional analysis of three unrelated families with familial sinus bradycardia (FSB). Background Mutations in the hyperpolarization-activated nucleotide-gated channel (HCN4) are known to be associated with FSB. Methods and Results Three males of Moroccan Jewish descent were hospitalized: one survived an out-of-hospital cardiac arrest and 2 presented with weakness and presyncopal events. All 3 had significant sinus bradycardia, also found in other first-degree relatives, with a segregation suggesting autosomal-dominant inheritance. All had normal response to exercise and normal heart structure. Sequencing of the HCN4 gene in all patients revealed a C to T transition at nucleotide position 1454, which resulted in an alanine to valine change (A485V) in the ion channel pore found in most of their bradycardiac relatives, but not in 150 controls. Functional expression of the mutated ion channel in Xenopus oocytes and in human embryonic kidney 293 cells revealed profoundly reduced function and synthesis of the mutant channel compared to wild-type. Conclusions We describe a new mutation in the HCN4 gene causing symptomatic FSB in 3 unrelated individuals of similar ethnic background that may indicate unexplained FSB in this ethnic group. This profound functional defect is consistent with the symptomatic phenotype. PMID:updating

  7. The structure and energetics of the HCN → HNC transition state

    NASA Astrophysics Data System (ADS)

    Lee, Timothy J.; Rendell, Alistair P.

    updating

    The optimum geometries and quadratic force constants of HCN, HNC and the transition state connecting them have been determined at the single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory. Energy differences were evaluated using the CCSD and CCSD(T) methods in conjunction with large atomic natural orbital basis sets containing g-type basis functions on the heavy atoms and f-type functions on hydrogen. The most reliable structure obtained for the transition state has bond distances of 1.194, 1.188 and 1.389 Å for rCN, rCH and rNH, respectively. Including a correction for zero-point vibrational energies, the transition state is predicted to be 44.6 ± 1.0 kcal/mol above the HCN isomer, while HNC is predicted to be 14.4 ± 1.0 kcal/mol above HCN. The latter value is in excellent agreement with the most recent experimental determination (14.8 ± 2.0 kcal/mol).

  8. HCN 1 Channels as Targets for Anesthetic and Nonanesthetic Propofol Analogs in the Amelioration of Mechanical and Thermal Hyperalgesia in a Mouse Model of Neuropathic Pain

    PubMed Central

    Tibbs, Gareth R.; Rowley, Thomas J.; Sanford, R. Lea; Herold, Karl F.; Proekt, Alex; Hemmings, Hugh C.; Andersen, Olaf S.; Flood, Pamela D.

    updating

    Chronic pain after peripheral nerve injury is associated with afferent hyperexcitability and upregulation of hyperpolarization-activated, cyclic nucleotide-regulated (HCN)–mediated IH pacemaker currents in sensory neurons. HCN channels thus constitute an attractive target for treating chronic pain. HCN channels are ubiquitously expressed; analgesics targeting HCN1-rich cells in the peripheral nervous system must spare the cardiac pacemaker current (carried mostly by HCN2 and HCN4) and the central nervous system (where all four isoforms are expressed). The alkylphenol general anesthetic propofol (2,6-di-iso-propylphenol) selectively inhibits HCN1 channels versus HCN2–HCN4 and exhibits a modest pharmacokinetic preference for the periphery. Consequently, we hypothesized that propofol, and congeners, should be antihyperalgesic. Alkyl-substituted propofol analogs have different rank-order potencies with respect to HCN1 inhibition, GABAA receptor (GABAA-R) potentiation, and general anesthesia. Thus, 2,6- and 2,4-di-tertbutylphenol (2,6- and 2,4-DTBP, respectively) are more potent HCN1 antagonists than propofol, whereas 2,6- and 2,4-di-sec-butylphenol (2,6- and 2,4-DSBP, respectively) are less potent. In contrast, DSBPs, but not DTBPs, enhance GABAA-R function and are general anesthetics. 2,6-DTBP retained propofol’s selectivity for HCN1 over HCN2–HCN4. In a peripheral nerve ligation model of neuropathic pain, 2,6-DTBP and subhypnotic propofol are antihyperalgesic. The findings are consistent with these alkylphenols exerting analgesia via non-GABAA-R targets and suggest that antagonism of central HCN1 channels may be of limited importance to general anesthesia. Alkylphenols are hydrophobic, and thus potential modifiers of lipid bilayers, but their effects on HCN channels are due to direct drug-channel interactions because they have little bilayer-modifying effect at therapeutic concentrations. The alkylphenol antihyperalgesic target may be HCN1 channels in the

  9. THE VARIABILITY OF HCN IN TITAN’S UPPER ATMOSPHERE AS IMPLIED BY THE CASSINI ION-NEUTRAL MASS SPECTROMETER MEASUREMENTS

    SciTech Connect

    Cui, J.; Cao, Y.-T.; Lavvas, P. P.

    updating

    HCN is an important constituent in Titan’s upper atmosphere, serving as the main coolant in the local energy budget. In this study, we derive the HCN abundance at the altitude range of 960–1400 km, combining the Ion-Neutral Mass Spectrometer data acquired during a large number of Cassini flybys with Titan. Typically, the HCN abundance declines modestly with increasing altitude and flattens to a near constant level above 1200 km. The data reveal a tendency for dayside depletion of HCN, which is clearly visible below 1000 km but weakens with increasing altitude. Despite the absence of convincing anti-correlation between HCN volumemore » mixing ratio and neutral temperature, we argue that the variability in HCN abundance makes an important contribution to the large temperature variability observed in Titan’s upper atmosphere.« less

  10. HCN channels segregate stimulation‐evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents

    PubMed Central

    Farrell, Jordan S.; Palmer, Laura A.; Singleton, Anna C.; Pittman, Quentin J.; Teskey, G. Campbell

    updating

    Key points The present study tested whether HCN channels contribute to the organization of motor cortex and to skilled motor behaviour during a forelimb reaching task.Experimental reductions in HCN channel signalling increase the representation of complex multiple forelimb movements in motor cortex as assessed by intracortical microstimulation.Global HCN1KO mice exhibit reduced reaching accuracy and atypical movements during a single‐pellet reaching task relative to wild‐type controls.Acute pharmacological inhibition of HCN channels in forelimb motor cortex decreases reaching accuracy and increases atypical movements during forelimb reaching. Abstract The mechanisms by which distinct movements of a forelimb are generated from the same area of motor cortex have remained elusive. Here we examined a role for HCN channels, given their ability to alter synaptic integration, in the expression of forelimb movement responses during intracortical microstimulation (ICMS) and movements of the forelimb on a skilled reaching task. We used short‐duration high‐resolution ICMS to evoke forelimb movements following pharmacological (ZD7288), experimental (electrically induced cortical seizures) or genetic approaches that we confirmed with whole‐cell patch clamp to substantially reduce I h current. We observed significant increases in the number of multiple movement responses evoked at single sites in motor maps to all three experimental manipulations in rats or mice. Global HCN1 knockout mice were less successful and exhibited atypical movements on a skilled‐motor learning task relative to wild‐type controls. Furthermore, in reaching‐proficient rats, reaching accuracy was reduced and forelimb movements were altered during infusion of ZD7288 within motor cortex. Thus, HCN channels play a critical role in the separation of overlapping movement responses and allow for successful reaching behaviours. These data provide a novel mechanism for the encoding of multiple

  11. Characterization of a right atrial subsidiary pacemaker and acceleration of the pacing rate by HCN over-expression.

    PubMed

    Morris, Gwilym M; D'Souza, Alicia; Dobrzynski, Halina; Lei, Ming; Choudhury, Moinuddin; Billeter, Rudi; Kryukova, Yelena; Robinson, Richard B; Kingston, Paul A; Boyett, Mark R

    updating

    Although the right atrium (RA contains subsidiary atrial pacemaker (SAP) tissue that can take over from the sinoatrial node (SAN) in sick sinus syndrome (SSS), SAP tissue is bradycardic. Little is known about SAP tissue and one aim of the study was to characterize ion channel expression to obtain insight into SAP pacemaker mechanisms. A second aim was to determine whether HCN over-expression (a 'biopacemaker'-like strategy) can accelerate the pacemaker rate producing a pacemaker that is similar in nature to the SAN. SAP tissue was isolated from the rat and the leading pacemaker site was characterized. Cell size at the leading pacemaker site in the SAP was smaller than in the RA and comparable to that in the SAN. mRNA levels showed the SAP to be similar to, but distinct from, the SAN. For example, in the SAN and SAP, expression of Tbx3 and HCN1 was higher and Nav1.5 and Cx43 lower than in the RA. Organ-cultured SAP tissue beat spontaneously, but at a slower rate than the SAN. Adenovirus-mediated gene transfer of HCN2 and the chimeric protein HCN212 significantly increased the pacemaker rate of the SAP close to that of the native SAN, but HCN4 was ineffective. SAP tissue near the inferior vena cava is bradycardic, but shares characteristics with the SAN. Pacing can be accelerated by the over-expression of HCN2 or HCN212. This provides proof of concept for the use of SAP tissue as a substrate for biopacemaking in the treatment of SSS.

  12. Novel HCN 2 mutation contributes to febrile seizures by shifting the channel's kinetics in a temperature-dependent manner.

    PubMed

    Nakamura, Yuki; Shi, Xiuyu; Numata, Tomohiro; Mori, Yasuo; Inoue, Ryuji; Lossin, Christoph; Baram, Tallie Z; Hirose, Shinichi

    updating

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated currents, known as I h, are involved in the control of rhythmic activity in neuronal circuits and in determining neuronal properties including the resting membrane potential. Recent studies have shown that HCN channels play a role in seizure susceptibility and in absence and limbic epilepsy including temporal lobe epilepsy following long febrile seizures (FS). This study focused on the potential contributions of abnormalities in the HCN2 isoform and their role in FS. A novel heterozygous missense mutation in HCN2 exon 1 leading to p.S126L was identified in two unrelated patients with FS. The mutation was inherited from the mother who had suffered from FS in a pedigree. To determine the effect of this substitution we conducted whole-cell patch clamp electrophysiology. We found that mutant channels had elevated sensitivity to temperature. More specifically, they displayed faster kinetics at higher temperature. Kinetic shift by change of temperature sensitivity rather than the shift of voltage dependence led to increased availability of I h in conditions promoting FS. Responses to cyclic AMP did not differ between wildtype and mutant channels. Thus, mutant HCN2 channels cause significant cAMP-independent enhanced availability of I h during high temperatures, which may contribute to hyperthermia-induced neuronal hyperexcitability in some individuals with FS.

  13. A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization.

    PubMed

    Zhou, Lei; Olivier, Nelson B; Yao, Huan; Young, Edgar C; Siegelbaum, Steven A

    updating

    Cyclic nucleotides directly enhance the opening of the tetrameric CNG and HCN channels, although the mechanism remains unclear. We examined why HCN and certain CNG subunits form functional homomeric channels, whereas other CNG subunits only function in heteromeric channels. The "defect" in the CNGA4 subunit that prevents its homomeric expression was localized to its C-linker, which connects the transmembrane domain to the binding domain and contains a tripeptide that decreases the efficacy of ligand gating. Remarkably, replacement of the homologous HCN tripeptide with the CNGA4 sequence transformed cAMP into an inverse agonist that inhibits HCN channel opening. Using analytical ultracentrifugation, we identified the structural basis for this gating switch: whereas cAMP normally enhances the assembly of HCN C-terminal domains into a tetrameric gating ring, inclusion of the CNGA4 tripeptide reversed this action so that cAMP now causes gating ring disassembly. Thus, ligand gating depends on the dynamic oligomerization of C-terminal binding domains.

  14. The correlation between HCN /H2O flux ratios and disk mass: evidence for protoplanet formation

    NASA Astrophysics Data System (ADS)

    Rose, Caitlin; Salyk, Colette

    updating

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  15. Formation of the center of ignition in a CH 3 Cl -Cl2 mixture under the action of UV light

    NASA Astrophysics Data System (ADS)

    Begishev, I. R.; Belikov, A. K.; Komrakov, P. V.; Nikitin, I. S.

    updating

    The dependence of temperature on time is investigated using a microthermocouple at different distances from a UV light source in a mixture of chlorine and chloromethane. These relationships give an idea of the size and location of a center of photoignition. It is found that if the size of the reaction vessel in the direction of the luminous flux is much greater than the dimensions of the ignition center, the thermal expansion of a reacting gas mixture has a huge impact on such photoignition parameters as the critical concentration limits and the critical intensity of UV radiation. It is found that by increasing the length of the vessel, some chlorinated combustible mixtures lose the ability to ignite when exposed to UV light.

  16. A New Instrument for Thermal Electron Attachment at High Temperature: NF3 and CH 3 Cl Attachment Rate Constants up to 1100 K

    DTIC Science & Technology

    updating

    attachment at high temperature: NF3 and CH3CI attachment rate constants up to 1100 K >• Q- O o o o 1,a> Bus Thomas M. Miller, l ’ Jeffrey F...Dotan. M. Menendez-Barreto. J. V. Seeley , J. S. Williamson, F. Dale, P. L. Mundis, R. A. Morris, J. F. Paulson, and A. A. Viggiano, Rev. Sci

  17. Sources and sinks for nitrous oxide and experimental studies of the source of atmospheric COS, CS-2 and CH -3 -Cl

    NASA Technical Reports Server (NTRS)

    Wofsy, S. C.

    updating

    Studies of the air and water chemistry in the Amazon region of Brazil were undertaken. Harvard scientists were invited to participate in several experiments at INPA facilities, at other sites in Brazil, and aboard the RV Calypso of the Cousteau Society. Expeditions and participants are summarized.

  18. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN 2 gene and myocytes—A model

    NASA Astrophysics Data System (ADS)

    Kanani, S.; Pumir, A.; Krinsky, V.

    updating

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  19. Small functional If current in sinoatrial pacemaker cells of the brown trout (Salmo trutta fario) heart despite strong expression of HCN channel transcripts.

    PubMed

    Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti

    updating

    Funny current ( I f ), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout ( Salmo trutta fario ) sinoatrial (SA) pacemaker cells and their putative role in heart rate ( f H ) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small I f with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for I f activity. I f was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large I f currents. In contrast, HCN3 (+MiRP1) failed to produce I f in the same expression system. Cs + (2 mM), which blocked 84 ± 12% of the native I f , reversibly reduced f H 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min ( P

  20. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN ) detection in exhaled breath

    NASA Astrophysics Data System (ADS)

    Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.

    updating

    A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability updating nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.

  1. ALMA Imaging of HCN , CS, and Dust in Arp 220 and NGC 6240

    NASA Astrophysics Data System (ADS)

    Scoville, Nick; Sheth, Kartik; Walter, Fabian; Manohar, Swarnima; Zschaechner, Laura; Yun, Min; Koda, Jin; Sanders, David; Murchikova, Lena; Thompson, Todd; Robertson, Brant; Genzel, Reinhard; Hernquist, Lars; Tacconi, Linda; Brown, Robert; Narayanan, Desika; Hayward, Christopher C.; Barnes, Joshua; Kartaltepe, Jeyhan; Davies, Richard; van der Werf, Paul; Fomalont, Edward

    updating

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ~0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 109 M ⊙within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are nH_2 ˜ 10^5 cm-3 at R HCN and CS emission with n H2 ~ 2 × 105 cm-3. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese.

  2. Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate.

    PubMed

    Ryu, Sujung; Yellen, Gary

    updating

    HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K(+) channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K(+) channels, but apparently these two components are coupled differently. In this study, we examine the energetics of coupling between the voltage sensor and the pore by using cysteine mutant channels for which low concentrations of Cd(2+) ions freeze the open-closed gating machinery but still allow the sensors to move. We were able to lock mutant channels either into open or into closed states by the application of Cd(2+) and measure the effect on voltage sensor movement. Cd(2+) did not immobilize the gating charge, as expected for strict coupling, but rather it produced shifts in the voltage dependence of voltage sensor charge movement, consistent with its effect of confining transitions to either closed or open states. From the magnitude of the Cd(2+)-induced shifts, we estimate that each voltage sensor produces a roughly three- to sevenfold effect on the open-closed equilibrium, corresponding to a coupling energy of ∼1.3-2 kT per sensor. Such coupling is not only opposite in sign to the coupling in K(+) channels, but also much weaker.

  3. Modulation of thalamocortical oscillations by TRIP8b, an auxiliary subunit for HCN channels.

    PubMed

    Zobeiri, Mehrnoush; Chaudhary, Rahul; Datunashvili, Maia; Heuermann, Robert J; Lüttjohann, Annika; Narayanan, Venu; Balfanz, Sabine; Meuth, Patrick; Chetkovich, Dane M; Pape, Hans-Christian; Baumann, Arnd; van Luijtelaar, Gilles; Budde, Thomas

    updating

    Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels have important functions in controlling neuronal excitability and generating rhythmic oscillatory activity. The role of tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) in regulation of hyperpolarization-activated inward current, I h , in the thalamocortical system and its functional relevance for the physiological thalamocortical oscillations were investigated. A significant decrease in I h current density, in both thalamocortical relay (TC) and cortical pyramidal neurons was found in TRIP8b-deficient mice (TRIP8b -/- ). In addition basal cAMP levels in the brain were found to be decreased while the availability of the fast transient A-type K + current, I A , in TC neurons was increased. These changes were associated with alterations in intrinsic properties and firing patterns of TC neurons, as well as intrathalamic and thalamocortical network oscillations, revealing a significant increase in slow oscillations in the delta frequency range (0.5-4 Hz) during episodes of active-wakefulness. In addition, absence of TRIP8b suppresses the normal desynchronization response of the EEG during the switch from slow-wave sleep to wakefulness. It is concluded that TRIP8b is necessary for the modulation of physiological thalamocortical oscillations due to its direct effect on HCN channel expression in thalamus and cortex and that mechanisms related to reduced cAMP signaling may contribute to the present findings.

  4. Phase-space reaction network on a multisaddle energy landscape: HCN isomerization.

    PubMed

    Li, Chun-Biu; Matsunaga, Yasuhiro; Toda, Mikito; Komatsuzaki, Tamiki

    updating

    By using the HCN/CNH isomerization reaction as an illustrative vehicle of chemical reactions on multisaddle energy landscapes, we give explicit visualizations of molecular motions associated with a straight-through reaction tube in the phase space inside which all reactive trajectories pass from one basin to another, with eliminating recrossing trajectories in the configuration space. This visualization provides us with a chemical intuition of how chemical species "walk along" the reaction-rate slope in the multidimensional phase space compared with the intrinsic reaction path in the configuration space. The distinct nonergodic features in the two different HCN and CNH wells can be easily demonstrated by a section of Poincare surface of section in those potential minima, which predicts in a priori the pattern of trajectories residing in the potential well. We elucidate the global phase-space structure which gives rise to the non-Markovian dynamics or the dynamical correlation of sequential multisaddle chemical reactions. The phase-space structure relevant to the controllability of the product state in chemical reactions is also discussed.

  5. Global bending quantum number and the absence of monodromy in the HCN {r_reversible}CNH molecule

    SciTech Connect

    Efstathiou, K.; Sadovskii, D.A.; Joyeux, M.

    We introduce and analyze a model system based on a deformation of a spherical pendulum that can be used to reproduce large amplitude bending vibrations of flexible triatomic molecules with two stable linear equilibria. On the basis of our model and the recent vibrational potential [ J. Chem. Phys. 115, updating) ], we analyze the HCN/CNH isomerizing molecule. We find that HCN/CNH has no monodromy and introduce the second global bending quantum number for this system at all energies where the potential is expected to work. We also show that LiNC/LiCN is a qualitatively different system with monodromy.

  6. ALMA HCN AND HCO{sup +} J  = 3 − 2 OBSERVATIONS OF OPTICAL SEYFERT AND LUMINOUS INFRARED GALAXIES: CONFIRMATION OF ELEVATED HCN -TO-HCO{sup +} FLUX RATIOS IN AGNS

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: nguyenquanghuy@gmail.com

    We present the results of our ALMA observations of three active galactic nucleus (AGN)-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO{sup +} J  = 3 − 2 emission lines. The HCN and HCO{sup +} J  = 3 − 2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited ( v {sub 2} = 1f) HCN J  = 3 − 2 and HCO{sup +} J  = 3 − 2 emission lines are simultaneouslymore » covered, and HCN v {sub 2} = 1f J  = 3 − 2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS updating and IRAS 22491–1808, neither of which shows clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 μ m photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v {sub 2} = 1f to v  = 0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v {sub 2} = 1f emission lines. The observed HCN-to-HCO{sup +} J  = 3 − 2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J  = 1 − 0 and J  = 4 − 3.« less

  7. Structural Basis of Tonic Inhibition by Dimers of Dimers in Hyperpolarization-Activated Cyclic-Nucleotide-Modulated (HCN ) Ion Channels.

    PubMed

    VanSchouwen, Bryan; Melacini, Giuseppe

    updating

    The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP (cAMP) modulates HCN activity through cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN. In the absence of cAMP, the IR cAMP-binding domain (CBD) mainly samples its inactive conformation, resulting in steric clashes that destabilize the IR tetramer. Although these clashes with the inactive CBD are released through tetramer dissociation into monomers, functional mutagenesis suggests that the apo IR is not fully monomeric. To investigate the inhibitory non-monomeric IR species, we performed molecular dynamics simulations starting from "hybrid" structures that are tetrameric, but contain inactive apo-state CBD conformations. The ensemble of simulated trajectories reveals that full dissociation of the tetramer into monomers is not necessary to release the steric hindrance with the inactive CBD. Specifically, we found that partial dissociation of the tetramer into dimers is sufficient to accommodate four inactive CBDs, while reduction of the quaternary symmetry of the non-dissociated tetramer from four- to two-fold permits accommodation of two inactive CBDs. Our findings not only rationalize available electrophysiological, fluorometry and sedimentation equilibrium data, but they also provide unprecedented structural insight into previously elusive non-monomeric auto-inhibitory HCN species.

  8. A search for SiO, OH, CO and HCN radio emission from silicate-carbon stars

    NASA Technical Reports Server (NTRS)

    Little-Marenin, I. R.; Sahai, R.; Wannier, P. G.; Benson, P. J.; Gaylard, M.; Omont, A.

    updating

    We report upper limits for radio emission of SiO at 86 and 43 GHz, of OH at 1612 and 1665/1667 MHz, of CO at 115 GHz and HCN at 88.6 GHz in the silicate-carbon stars. These upper limits of SiO imply that oxygen-rich material has not been detected within 2R(sub star) of a central star even though the detected emission from silicate dust grains, H2O and OH maser establishes the presence of oxygen-rich material from about tens to thousands of AU of a central star. The upper limit of the SiO abundance is consistent with that found in oxygen-rich envelopes. Upper limits of the mass loss rate (based on the CO data) are estimated to be between 10(exp -6) to 10(exp -7) solar mass/yr assuming a distance of 1.5 kpc for these stars. The absence of HCN microwave emission implies that no carbon-rich material can be detected at large distances (thousands of AU) from a central star. The lack of detections of SiO, CO, and HCN emission is most likely due to the large distances of these stars. A number of C stars were detected in CO and HCN, but only the M supergiant VX Sgr was detected in CO.

  9. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal

    NASA Astrophysics Data System (ADS)

    Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong

    updating

    The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.

  10. Measurement of electron density profiles on HT-6M tokamak by 7-channel FIR HCN laser interferometer

    NASA Astrophysics Data System (ADS)

    Xiang, Gao; Qiliang, Guo

    updating

    Electron density measurements are periormed on HT-6M tokamak using a 7 channel Far-Infrared HCN laser interferometer. From the measured line integrals--7 channel phase shifts the electron density profile is reconstructed by a fit procedure. Results were tested by comparison to Abel inverted. Some recent interesting experimental results were reported.

  11. A global ab initio potential for HCN /HNC, exact vibrational energies, and comparison to experiment

    NASA Technical Reports Server (NTRS)

    Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.

    updating

    An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.

  12. Electron-impact excitation of the low-lying electronic states of HCN

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.

    updating

    The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.

  13. Acetylene (C2H2) and hydrogen cyanide (HCN ) from IASI satellite observations: global distributions, validation, and comparison with model

    NASA Astrophysics Data System (ADS)

    Duflot, V.; Wespes, C.; Clarisse, L.; Hurtmans, D.; Ngadi, Y.; Jones, N.; Paton-Walsh, C.; Hadji-Lazaro, J.; Vigouroux, C.; De Mazière, M.; Metzger, J.-M.; Mahieu, E.; Servais, C.; Hase, F.; Schneider, M.; Clerbaux, C.; Coheur, P.-F.

    updating

    We present global distributions of C2H2 and hydrogen cyanide (HCN) total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) for the years updating. These distributions are obtained with a fast method allowing to retrieve C2H2 abundance globally with a 5 % precision and HCN abundance in the tropical (subtropical) belt with a 10 % (25 %) precision. IASI data are compared for validation purposes with ground-based Fourier transform infrared (FTIR) spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements with correlation coefficients for daily mean measurements ranging from 0.28 to 0.81, depending on the site. Global C2H2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. Total columns simulated by the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) are compared to the ground-based FTIR measurements at the four selected stations. The model is able to capture the seasonality in the two species in most of the cases, with correlation coefficients for daily mean measurements ranging from 0.50 to 0.86, depending on the site. IASI measurements are also compared to the distributions from MOZART-4. Seasonal cycles observed from satellite data are reasonably well reproduced by the model with correlation coefficients ranging from -0.31 to 0.93 for C2H2 daily means, and from 0.09 to 0.86 for HCN daily means, depending on the considered region. However, the anthropogenic (biomass burning) emissions used in the model seem to be overestimated (underestimated), and a negative global mean bias of 1 % (16 %) of the model relative to the satellite observations was found for C2H2 (HCN).

  14. On-board Measurement of HCN and NH3 Emissions from Vehicles During Real-World Driving

    NASA Astrophysics Data System (ADS)

    Moss, J. A.; Baum, M. M.

    updating

    Emission control systems in light-duty motor vehicles have played an important role in improving regional air quality by dramatically reducing the concentration of criteria pollutants (carbon monoxide, hydrocarbons, and nitrogen oxides) in exhaust emissions. Unintended side-reactions occurring on the surface of three-way catalysts can, however, lead to emission of non-criteria pollutants such as ammonia (NH3) and hydrogen cyanide (HCN). A pair of spectrometers based on tunable diode lasers (TDL) emitting in the near-infrared (1529 nm) and mid-infrared (2975 nm) have been developed for determination of HCN and acetylene (C2H2) emission rates from light-duty motor vehicles in real-time, while driving. Both spectrometers have been evaluated extensively using standard gas mixtures in the laboratory and exhaust from idling and moving vehicles. The TDL spectrometers were incorporated into an on-board instrument suite containing instrumentation for measurement of CO2, HCN, C2H2, NH3 and amines, and exhaust flow rate. On-board measurements were carried out on a fleet of ten vehicles driving a 30 minute circuit representative of real-world urban driving conditions. These measurements afforded emission factors for NH3 (194 × 147 mg km-1) and HCN (3.33 × 3.61 mg km-1), as well as the first report of methylamine emission factors, 0.70 × 0.61 mg km-1. Emissions of both amines were highly correlated (R2 = 0.95). The temporally-resolved TDL spectrometer measurements indicate that the highest HCN and C2H2 emissions occur during specific emission modes that are a function of driving conditions.

  15. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos.

    PubMed

    Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    updating

    Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. ALMA IMAGING OF HCN , CS, AND DUST IN ARP 220 AND NGC 6240

    SciTech Connect

    Scoville, Nick; Manohar, Swarnima; Murchikova, Lena

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ∼0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 10{sup 9} M {sub ☉}within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dustmore » emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are n{sub H{sub 2}}∼10{sup 5} cm{sup –3} at R HCN and CS emission with n {sub H2} ∼ 2 × 10{sup 5} cm{sup –3}. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese.« less

  17. SUBMILLIMETER-HCN DIAGRAM FOR ENERGY DIAGNOSTICS IN THE CENTERS OF GALAXIES

    SciTech Connect

    Izumi, Takuma; Kohno, Kotaro; Aalto, Susanne

    updating

    Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4–3)/HCO{sup +}(4–3) and/or HCN(4–3)/CS(7–6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of themore » high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO{sup +} and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even ≳10 are a plausible explanation for the submillimeter HCN enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral–neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.« less

  18. HITRAN2016 Database Part II: Overview of the Spectroscopic Parameters of the Trace Gases

    NASA Astrophysics Data System (ADS)

    Tan, Yan; Gordon, Iouli E.; Rothman, Laurence S.; Kochanov, Roman V.; Hill, Christian

    updating

    The 2016 edition of HITRAN database is available now. This new edition of the database takes advantage of the new structure and can be accessed through HITRANonline (www.hitran.org). The line-by-line lists for almost all of the trace atmospheric species were updated in comparison with the previous edition HITRAN2012. These extended update covers not only updating few transitions of the certain molecules, but also complete replacements of the whole line lists, and as well as introduction of new spectroscopic parameters for non-Voigt line shape. The new line lists for NH_3, HNO_3, OCS, HCN, CH_3Cl, C_2H_2, C_2H_6, PH_3, C_2H_4, CH_3CN, CF_4, C_4H_2, and SO_3 feature substantial expansion of the spectral and dynamic ranges in addition of the improved accuracy of the parameters for already existing lines. A semi-empirical procedure was developed to update the air-broadening and self-broadening coefficients of N_2O, SO_2, NH_3, CH_3Cl, H_2S, and HO_2. We draw particular attention to flaws in the commonly used expression n_{air}=0.79n_{N_2}+0.21n_{O_2} to determine the air-broadening temperature dependence exponent in the power law from those for nitrogen and oxygen broadening. A more meaningful approach will be presented. The semi-empirical line width, pressure shifts and temperature-dependence exponents of CO, NH_3, HF, HCl, OCS, C_2H_2, SO_2 perturbed by H_2, He, and CO_2 have been added to the database based on the algorithm described in Wilzewski et al.. The new spectroscopic parameters for HT profile were implemented into the database for hydrogen molecule. The HITRAN database is supported by the NASA AURA program grant NNX14AI55G and NASA PDART grant NNX16AG51G. I. E. Gordon, L. S. Rothman, et al., J Quant Spectrosc Radiat Transf 2017; submitted. Hill C, et al., J Quant Spectrosc Radiat Transf 2013;130:51-61. Wilzewski JS,et al., J Quant Spectrosc Radiat Transf 2016;168:193-206. Wcislo P, et al., J Quant Spectrosc Radiat Transf 2016;177:75-91.

  19. ALMA INVESTIGATION OF VIBRATIONALLY EXCITED HCN /HCO{sup +}/HNC EMISSION LINES IN THE AGN-HOSTING ULTRALUMINOUS INFRARED GALAXY IRAS 20551−4250

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: nguyenquanghuy@gmail.com

    updating

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551−4250 at HCN/HCO{sup +}/HNC J = 3–2 lines at both vibrational ground ( v = 0) and vibrationally excited ( v {sub 2} = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v {sub 2} = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO{sup +}/HNC J = 3–2 emission lines at v = 0 are clearly detected.more » The HCN and HNC v {sub 2} = 1f J = 3–2 emission lines are also detected, but the HCO{sup +} v {sub 2} = 1f J = 3–2 emission line is not. Given the high energy level of v {sub 2} = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μ m spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO{sup +} and HNC. The flux ratio and excitation temperature between v {sub 2} = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational ( J -level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO{sup +} v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO{sup +} flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO{sup +} abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO{sup +}.« less

  20. Airborne measurements of CO2, CH4 and HCN in boreal biomass burning plumes

    NASA Astrophysics Data System (ADS)

    O'Shea, Sebastian J.; Bauguitte, Stephane; Muller, Jennifer B. A.; Le Breton, Michael; Archibald, Alex; Gallagher, Martin W.; Allen, Grant; Percival, Carl J.

    updating

    Biomass burning plays an important role in the budgets of a variety of atmospheric trace gases and particles. For example, fires in boreal Russia have been linked with large growths in the global concentrations of trace gases such as CO2, CH4 and CO (Langenfelds et al., 2002; Simpson et al., 2006). High resolution airborne measurements of CO2, CH4 and HCN were made over Eastern Canada onboard the UK Atmospheric Research Aircraft FAAM BAe-146 from 12 July to 4 August 2011. These observations were made as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites). Flights were aimed at transecting and sampling the outflow from the commonly occurring North American boreal forest fires during the summer months and to investigate and identify the chemical composition and evolution of these plumes. CO2 and CH4 dry air mole fractions were determined using an adapted system based on a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200) from Los Gatos Research Inc, which uses the cavity enhanced absorption spectroscopy technique. In-flight calibrations revealed a mean accuracy of 0.57 ppmv and 2.31 ppbv for 1 Hz observations of CO2 and CH4, respectively, during the BORTAS project. During these flights a number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements. HCN is a distinctive and useful marker for forest fire emissions and it was detected using chemical ionisation mass spectrometry (CIMS). In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 8.5 ± 0.9 g of CH4 and 1512 ± 185 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies and can be used to calculate budgets for the region. However for aged plumes the correlations between CH4 and other

  1. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN /HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    NASA Technical Reports Server (NTRS)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    updating

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  2. Role of Dynamics in the Autoinhibition and Activation of the Hyperpolarization-activated Cyclic Nucleotide-modulated (HCN ) Ion Channels*♦

    PubMed Central

    VanSchouwen, Bryan; Akimoto, Madoka; Sayadi, Maryam; Fogolari, Federico; Melacini, Giuseppe

    updating

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP allosterically modulates HCN through the cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN, to which cAMP binds. Although the apo versus holo conformational changes of the cAMP-binding domain (CBD) have been previously mapped, only limited information is currently available on the HCN IR dynamics, which have been hypothesized to play a critical role in the cAMP-dependent gating of HCN. Here, using molecular dynamics simulations validated and complemented by experimental NMR and CD data, we comparatively analyze HCN IR dynamics in the four states of the thermodynamic cycle arising from the coupling between cAMP binding and tetramerization equilibria. This extensive set of molecular dynamics trajectories captures the active-to-inactive transition that had remained elusive for other CBDs, and it provides unprecedented insight on the role of IR dynamics in HCN autoinhibition and its release by cAMP. Specifically, the IR tetramerization domain becomes more flexible in the monomeric states, removing steric clashes that the apo-CDB structure would otherwise impose. Furthermore, the simulations reveal that the active/inactive structural transition for the apo-monomeric CBD occurs through a manifold of pathways that are more divergent than previously anticipated. Upon cAMP binding, these pathways become disallowed, pre-confining the CBD conformational ensemble to a tetramer-compatible state. This conformational confinement primes the IR for tetramerization and thus provides a model of how cAMP controls HCN channel gating. PMID:updating

  3. HCN 4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner.

    PubMed

    Pai, Vaibhav P; Willocq, Valerie; Pitcairn, Emily J; Lemire, Joan M; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A; Levin, Michael

    updating

    Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels ( I h currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal , Lefty , and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. © 2017. Published by The Company of Biologists Ltd.

  4. HCN 4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner

    PubMed Central

    Pai, Vaibhav P.; Willocq, Valerie; Pitcairn, Emily J.; Lemire, Joan M.; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A.

    updating

    ABSTRACT Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. PMID:updating

  5. The dynamics of the Cl+C 2 H 6 →HCl(v',j')+C2H5 reaction at 0.24 eV: Is ethyl a spectator?

    NASA Astrophysics Data System (ADS)

    Bass, M. J.; Brouard, M.; Vallance, C.; Kitsopoulos, T. N.; Samartzis, P. C.; Toomes, R. L.

    updating

    The hydrogen atom abstraction reaction between Cl(2P3/2) and ethane has been studied at a mean collision energy of 0.24 eV. The experiments were performed in a coexpansion of molecular chlorine and ethane, with the atomic Cl reactants generated by laser photodissociation of Cl2 at 355 nm. HCl(v',j') products were detected quantum state selectively using (2+1) resonantly enhanced multiphoton ionization, coupled with velocity-map ion imaging. The ion images were used to determine center-of-mass angular and kinetic energy release distributions. Several analysis methods were employed and have been carefully assessed. It is shown that the single beam experiments can be used with confidence to determine both center-of-mass angular and energy release distributions. For the title reaction the angular distribution is found to be forward peaking, with on average 22% of the available energy channeled into internal excitation of the ethyl coproducts. Possible sources of this internal excitation are discussed.

  6. State-resolved differential cross-section measurement of Cl+C 2 H 6 →HCl+C 2H 5 reaction using single-beam velocity mapping

    NASA Astrophysics Data System (ADS)

    Samartzis, Peter C.; Smith, Derek J.; Rakitzis, T. Peter; Kitsopoulos, Theofanis N.

    updating

    The bimolecular reaction of atomic chlorine with ethane at a collision energy of 0.36 eV is studied in a single-beam experiment, using velocity mapping of a state-selected reaction product. The differential cross-section for HCl( v=0, J=1) product is directly determined from its Abel-inverted velocity map image. Our results are similar to previous measurements of the differential cross-section and suggest that the HCl( v=0, J=1) scattering is broad with a side-scattered peak. This Letter demonstrates the power of velocity mapping for measuring differential cross-sections for reactions for which one of the reactants is produced photolytically.

  7. Shock-tube measurements of carbon to oxygen atom ratios for incipient soot formation with C2H2, C2H4 and C 2 H 6 fuels

    NASA Technical Reports Server (NTRS)

    Radcliffe, S. W.; Appleton, J. P.

    updating

    The critical atomic carbon to oxygen ratios, Phi sub C, for incipient soot formation in shock heated acetylene, ethylene, ethane/oxygen/ argon mixtures was measured over the temperature range 2000 K to 2500 K for reactant partial pressures between 0.1 and 0.4 atoms. Absorption of light from a He-Ne laser at 6328A was was used to detect soot. It was observed that the values of Phi sub C for all three fuels increased uniformly with temperature such that at the highest temperatures Phi sub C was considerably greater than unity, i.e. greater than the value of about unity at which solid carbon should have been precipitated on a thermochemical equilibrium basis. Observations were made over periods extending up to about one millisecond, which was well in excess of the time required for the major heat release of the combustion reactions. The relevance of these experimental findings to the problem of soot formation in gas turbine combustion chambers is discussed.

  8. The photolysis of NH3 in the presence of substituted acetylenes - A possible source of oligomers and HCN on Jupiter

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Jacobson, Richard R.; Guillemin, Jean C.

    updating

    An NMR spectral study is presently conducted of NH3 photolysis in the presence of substituted acetylenes with NMR spectra and gas chromatography. Quantum yields and percentage conversions to products are reported. It is shown that acetylenic hydrocarbons generated during methane photolysis in Jupiter's stratosphere can react with radicals formed by NH3 photolysis to yield nonvolatile, yellow-brown polymers, alkylnitriles, and in due course, HCN, as observed on Jupiter.

  9. Predictions of the Contribution of HCN Half-Maximal Activation Potential Heterogeneity to Variability in Intrinsic Adaptation of Spiral Ganglion Neurons.

    PubMed

    Boulet, Jason; Bruce, Ian C

    updating

    Spiral ganglion neurons (SGNs) exhibit a wide range in their strength of intrinsic adaptation on a timescale of 10s to 100s of milliseconds in response to electrical stimulation from a cochlear implant (CI). The purpose of this study was to determine how much of that variability could be caused by the heterogeneity in half-maximal activation potentials of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, which are known to produce intrinsic adaptation. In this study, a computational membrane model of cat type I SGN was developed based on the Hodgkin-Huxley model plus HCN and low-threshold potassium (KLT) conductances in which the half-maximal activation potential of the HCN channel was varied and the response of the SGN to pulse train and paired-pulse stimulation was simulated. Physiologically plausible variation of HCN half-maximal activation potentials could indeed determine the range of adaptation on the timescale of 10s to 100s of milliseconds and recovery from adaptation seen in the physiological data while maintaining refractoriness within physiological bounds. This computational model demonstrates that HCN channels may play an important role in regulating the degree of adaptation in response to pulse train stimulation and therefore contribute to variable constraints on acoustic information coding by CIs. This finding has broad implications for CI stimulation paradigms in that cell-to-cell variation of HCN channel properties are likely to significantly alter SGN excitability and therefore auditory perception.

  10. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides

    NASA Astrophysics Data System (ADS)

    Hu, Yanan; Liu, Jiangping; Cheng, Jinhuan; Wang, Langlang; Tao, Lei; Wang, Qi; Wang, Xueqian; Ning, Ping

    updating

    In this work, a series of metal oxides (Fe,Cu) modified HZSM-5 catalysts were synthesized by incipient-wetness impregnation method and then characterized by XRD, N2 adsorption-desorption, H2-TPR, NH3-TPD, UV-vis, FT-IR and XPS measurements. The catalytic hydrolysis and oxidation behaviors toward HCN were investigated. The results indicated that the Fe-Cu/HZSM-5 catalysts exhibited more excellent performence on coupling catalytic hydrolysis and oxidation of HCN than HZSM-5, Fe/HZSM-5, Cu/HZSM-5, and both nearly 100% HCN conversion and 80% N2 selectivity were obtained at about 250 °C. The improved catalytic performance could be ascribed to the creation of highly dispersed iron and copper composites on the surface of the HZSM-5 support, the excellent redox and regulated acid properties of the active ingredients. Moreover, the highly N2 selectivity could be attributed to the good interaction between the Fe and Cu nanocomposites which was facilitated to the NH3-SCR (selective catalytic reduction of NO by NH3) reaction.

  11. Up-regulation of Hyperpolarization-activated Cyclic Nucleotide-gated Channel 3 (HCN 3) by Specific Interaction with K+ Channel Tetramerization Domain-containing Protein 3 (KCTD3)*

    PubMed Central

    Cao-Ehlker, Xiaochun; Zong, Xiangang; Hammelmann, Verena; Gruner, Christian; Fenske, Stefanie; Michalakis, Stylianos; Wahl-Schott, Christian; Biel, Martin

    updating

    Most ion channels consist of the principal ion-permeating core subunit(s) and accessory proteins that are assembled with the channel core. The biological functions of the latter proteins are diverse and include the regulation of the biophysical properties of the ion channel, its connection to signaling pathways and the control of its cell surface expression. There is recent evidence that native hyperpolarization-activated cyclic nucleotide-gated channel complexes (HCN1–4) also contain accessory subunits, among which TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) has been most extensively studied. Here, we identify KCTD3, a so far uncharacterized member of the potassium channel tetramerization-domain containing (KCTD) protein family as an HCN3-interacting protein. KCTD3 is widely expressed in brain and some non-neuronal tissues and colocalizes with HCN3 in specific regions of the brain including hypothalamus. Within the HCN channel family, KCTD3 specifically binds to HCN3 and leads to a profound up-regulation of cell surface expression and current density of this channel. HCN3 can also functionally interact with TRIP8b; however, we found no evidence for channel complexes containing both TRIP8b and KCTD3. The C terminus of HCN3 is crucially required for functional interaction with KCTD3. Replacement of the cytosolic C terminus of HCN2 by the corresponding domain of HCN3 renders HCN2 sensitive to regulation by KCTD3. The C-terminal-half of KCTD3 is sufficient for binding to HCN3. However, the complete protein including the N-terminal tetramerization domain is needed for HCN3 current up-regulation. Together, our experiments indicate that KCTD3 is an accessory subunit of native HCN3 complexes. PMID:updating

  12. ALMA Multiple-transition Molecular Line Observations of the Ultraluminous Infrared Galaxy IRAS updating: Different HCN , HCO+, and HNC Excitation, and Implications for Infrared Radiative Pumping

    NASA Astrophysics Data System (ADS)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma

    updating

    We present our ALMA multi-transition molecular line observational results for the ultraluminous infrared galaxy IRAS updating, which is known to contain a luminous buried active galactic nucleus and shows detectable vibrationally excited (v 2 = 1f) HCN and HNC emission lines. The rotational J = 1-0, 4-3, and 8-7 of HCN, {{HCO}}+, and HNC emission lines were clearly detected at a vibrational ground level (v = 0). Vibrationally excited (v 2 = 1f) J = 4-3 emission lines were detected for HCN and HNC, but not for {{HCO}}+. Their observed flux ratios further support our previously obtained suggestion, based on J = 3-2 data, that (1) infrared radiative pumping plays a role in rotational excitation at v = 0, at least for HCN and HNC, and (2) HCN abundance is higher than {{HCO}}+ and HNC. The flux measurements of the isotopologue H13CN, {{{H}}}13{{CO}}+, and HN13C J = 3-2 emission lines support the higher HCN abundance scenario. Based on modeling with collisional excitation, we constrain the physical properties of these line-emitting molecular gases, but find that higher HNC rotational excitation than HCN and {{HCO}}+ is difficult to explain, due to the higher effective critical density of HNC. We consider the effects of infrared radiative pumping using the available 5-30 μm infrared spectrum and find that our observational results are well-explained if the radiation source is located at 30-100 pc from the molecular gas. The simultaneously covered very bright CO J = 3-2 emission line displays a broad emission wing, which we interpret as being due to molecular outflow activity with the estimated rate of ˜ 150 {M}⊙ {{yr}}-1.

  13. RESOLVING THE BRIGHT HCN (1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    SciTech Connect

    Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric

    updating

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained bymore » the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.« less

  14. I h and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model.

    PubMed

    Liu, Qing; Manis, Paul B; Davis, Robin L

    updating

    One of the major contributors to the response profile of neurons in the auditory pathways is the I h current. Its properties such as magnitude, activation, and kinetics not only vary among different types of neurons (Banks et al., J Neurophysiol 70:updating, 1993; Fu et al., J Neurophysiol 78:updating, 1997; Bal and Oertel, J Neurophysiol 84:806-817, 2000; Cao and Oertel, J Neurophysiol 94:821-832, 2005; Rodrigues and Oertel, J Neurophysiol 95:76-87, 2006; Yi et al., J Neurophysiol 103:updating, 2010), but they also display notable diversity in a single population of spiral ganglion neurons (Mo and Davis, J Neurophysiol 78:updating, 1997), the first neural element in the auditory periphery. In this study, we found from somatic recordings that part of the heterogeneity can be attributed to variation along the tonotopic axis because I h in the apical neurons have more positive half-activation voltage levels than basal neurons. Even within a single cochlear region, however, I h current properties are not uniform. To account for this heterogeneity, we provide immunocytochemical evidence for variance in the intracellular density of the hyperpolarization-activated cyclic nucleotide-gated channel α-subunit 1 (HCN1), which mediates I h current. We also observed different combinations of HCN1 and HCN4 α-subunits from cell to cell. Lastly, based on the physiological data, we performed kinetic analysis for the I h current and generated a mathematical model to better understand varied I h on spiral ganglion function. Regardless of whether I h currents are recorded at the nerve terminals (Yi et al., J Neurophysiol 103:updating, 2010) or at the somata of spiral ganglion neurons, they have comparable mean half-activation voltage and induce similar resting membrane potential changes, and thus our model may also provide insights into the impact of I h on synaptic physiology.

  15. Baclofen ameliorates spatial working memory impairments induced by chronic cerebral hypoperfusion via up-regulation of HCN 2 expression in the PFC in rats.

    PubMed

    Luo, Pan; Chen, Cheng; Lu, Yun; Fu, TianLi; Lu, Qing; Xu, Xulin; Li, Changjun; He, Zhi; Guo, Lianjun

    updating

    Chronic cerebral hypoperfusion (CCH) causes memory deficits and increases the risk of vascular dementia (VD) through several biologically plausible pathways. However, whether CCH causes prefrontal cortex (PFC)-dependent spatial working memory impairments and Baclofen, a GABAB receptor agonist, could ameliorate the impairments is still not clear especially the mechanisms underlying the process. In this study, rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. Two weeks later, rats were treated with 25mg/kg Baclofen (intraperitioneal injection, i.p.) for 3 weeks. Spatial working memory was evaluated in a Morris water maze using a modified delayed matching-to-place (DMP) procedure. Western blotting and immunohistochemistry were used to quantify the protein levels and protein localization. Our results showed that 2VO caused striking spatial working memory impairments, accompanied with a decreased HCN2 expression in PFC, but the protein levels of protein gene product 9.5 (PGP9.5, a neuron specific protein), glial fibrillary acidic protein (GFAP), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), parvalbumin (PV) and HCN1 were not distinguishably changed as compared with sham-operated rats. Baclofen treatment significantly improved the spatial working memory impairments caused by 2VO, accompanied with a reversion of 2VO-induced down-regulation of HCN2. Furthermore, there was a co-localization of HCN2 subunits and parvalbumin-positive neurons in PFC. Therefore, HCN2 may target inhibitory interneurons that is implicated in working memory processes, which may be a possible mechanism of the up-regulation of HCN2 by Baclofen treatment that reliefs spatial working memory deficits in rats with CCH. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Is Photolytic Production a Viable Source of HCN and HNC in Astrophysical Environments? A Laboratory-based Feasibility Study of Methyl Cyanoformate

    NASA Astrophysics Data System (ADS)

    Wilhelm, Michael J.; Martínez-Núñez, Emilio; González-Vázquez, Jesús; Vázquez, Saulo A.; Smith, Jonathan M.; Dai, Hai-Lung

    updating

    Motivated by the possibility that cyano-containing hydrocarbons may act as photolytic sources for HCN and HNC in astrophysical environments, we conducted a combined experimental and theoretical investigation of the 193 nm photolysis of the cyano-ester, methyl cyanoformate (MCF). Experimentally, nanosecond time-resolved infrared emission spectroscopy was used to detect the emission from nascent products generated in the photolysis reaction. The time-resolved spectra were analyzed using a recently developed spectral reconstruction analysis, which revealed spectral bands assignable to HCN and HNC. Fitting of the emission band shape and intensity allowed determination of the photolysis quantum yields of HCN, HNC, and {CN}({A}2{{{\\Pi }}}1) and an HNC/HCN ratio of ˜0.076 ± 0.059. Additionally, multiconfiguration self-consistent field calculations were used to characterize photoexcitation-induced reactions in the ground and four lowest singlet excited states of MCF. At 193 nm excitation, dissociation is predicted to occur predominantly on the repulsive S 2 state, with minor pathways via internal conversion from S 2 to highly excited ground state. An automated transition-state search algorithm was employed to identify the corresponding ground-state dissociation channels, and Rice-Ramsperger-Kassel-Marcus and Kinetic Monte Carlo simulations were used to calculate the associated branching ratios. The proposed mechanisms were validated using the experimentally measured and quasi-classical trajectory-deduced nascent internal energy distributions of HCN and HNC. This work, along with previous studies, illustrates the propensity for cyano-containing hydrocarbons to act as photolytic sources for astrophysical HCN and HNC and may help explain the observed overabundance of HNC in astrophysical environments.

  17. Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus

    PubMed Central

    Li, Shuang; Kalappa, Bopanna I; Tzounopoulos, Thanos

    updating

    Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our results show that noise exposure induces, on average, a reduction in KCNQ2/3 channel activity in fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN channel activity. Our results highlight KCNQ2/3 and HCN channels as potential targets for designing novel therapeutics that may promote resilience to tinnitus. DOI: http://dx.doi.org/10.7554/eLife.updating PMID:updating

  18. Detection of CO and HCN in the coma of Jupiter-family comet 41P/Tuttle-Giacobini-Kresak

    NASA Astrophysics Data System (ADS)

    Wierzchos, Kacper; Womack, Maria

    updating

    Comets are divided into taxonomical groups determined largely by their orbits. Short-period Jupiter Family comets (JFCs) are thought to have formed in a trans-Neptunian disk ˜updating AU (Kuiper Belt) and then migrated inward (Edgeworth 1949, Kuiper 1951, Duncan et al. 1988). This different classification may be correlated with chemical abundance variations, and super-volatile species like CO can serve as an indicator of the thermal processes to which the precometary ices that led to comets where exposed (DiSainti et al. 2007). The close approach to Earth of comet 41P on the perihelion passage of 2017 was an excellent opportunity to probe the usually well-hidden inner coma of this Jupiter-family comet. We searched for CO (J=2-1) and HCN (J=3-2) emission with the Arizona Radio Observatory (ARO) 10-m Sub-millimeter Telescope (SMT) on 2017 April 1-2, when the comet was 1.1 AU from the Sun and 0.14 AU from Earth. We report the detection of both CO and HCN emission 13 days before perihelion and present column densities and production rates. We also discuss implications for Jupiter-family comets. The SMT is operated by the ARO, the Steward Observatory, and the University of Arizona, with support through the NSF University Radio Observatories program (AST-1140030). M.W. acknowledges support from NSF grant AST-1615917.

  19. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    PubMed Central

    updating

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur. PMID:updating

  20. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    PubMed

    Holm, Nils G; Neubeck, Anna

    updating

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  1. Nitrogen and hydrogen fractionation in high-mass star-forming cores from observations of HCN and HNC

    NASA Astrophysics Data System (ADS)

    Colzi, L.; Fontani, F.; Caselli, P.; Ceccarelli, C.; Hily-Blant, P.; Bizzocchi, L.

    updating

    The ratio between the two stable isotopes of nitrogen, 14N and 15N, is well measured in the terrestrial atmosphere ( 272), and for the pre-solar nebula ( 441, deduced from the solar wind). Interestingly, some pristine solar system materials show enrichments in 15N with respect to the pre-solar nebula value. However, it is not yet clear if and how these enrichments are linked to the past chemical history because we have only a limited number of measurements in dense star-forming regions. In this respect, dense cores, which are believed to be the precursors of clusters and also contain intermediate- and high-mass stars, are important targets because the solar system was probably born within a rich stellar cluster, and such clusters are formed in high-mass star-forming regions. The number of observations in such high-mass dense cores has remained limited so far. In this work, we show the results of IRAM-30 m observations of the J = 1-0 rotational transition of the molecules HCN and HNC and their 15N-bearing counterparts towards 27 intermediate- and high-mass dense cores that are divided almost equally into three evolutionary categories: high-mass starless cores, high-mass protostellar objects, and ultra-compact HII regions. We have also observed the DNC(2-1) rotational transition in order to search for a relation between the isotopic ratios D/H and 14N/15N. We derive average 14N/15N ratios of 359 ± 16 in HCN and of 438 ± 21 in HNC, with a dispersion of about 150-200. We find no trend of the 14N/15N ratio with evolutionary stage. This result agrees with what has been found for N2H+ and its isotopologues in the same sources, although the 14N/15N ratios from N2H+ show a higher dispersion than in HCN/HNC, and on average, their uncertainties are larger as well. Moreover, we have found no correlation between D/H and 14N/15N in HNC. These findings indicate that (1) the chemical evolution does not seem to play a role in the fractionation of nitrogen, and that (2) the

  2. MEG3, HCN 3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways.

    PubMed

    Tang, Weitao; Dong, Kuiran; Li, Kai; Dong, Rui; Zheng, Shan

    updating

    The purpose of this study was to investigate the differential expression and functional roles of long non-coding RNAs (lncRNAs) in neuroblastoma tissue. LncRNA microarrays were used to identify differentially expressed lncRNAs between tumor and para-tumor tissues. In total, in tumor tissues, 3,098 and 1,704 lncRNAs were upregulated and downregulated, respectively. HCN3 and linc01105 exhibited the higher expression (P HCN3 knockdown all increased apoptosis. The correlation coefficients between those three lncRNAs and the International Neuroblastoma Staging System (INSS) stage were -0.48, -0.58 and -0.55, respectively. In conclusion, we have identified lncRNAs that are differentially expressed in neuroblastoma tissues. The lncRNAs HCN3, linc01105, and MEG3 may be important in biological behaviors of neuroblastoma through mechanisms involving p53 pathway members such as HIF-1α, Noxa, and Bid. The expressions of MEG3, HCN3 and linc01105 are all negatively correlated with the INSS stage.

  3. Computational Studies Of Chemical Reactions: The Hnc-Hcn And Ch[subscript3]Nc-Ch[subscript3]Cn Isomerizations

    ERIC Educational Resources Information Center

    Halpern, Arthur M.

    updating

    The application of computational methods to the isomerization of hydrogen isocyanide to hydrogen cyanide, HNC-HCN is described. The logical extension to the exercise is presented to the isomerization of the methyl-substituted compounds, methylisocyanide and methylcyanide, Ch[subscript 3]NC-CH[subscript3]CN.

  4. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.

    updating

    Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.

  5. Distribution and Kinematics of the HCN (3-2) Emission Down to the Innermost Region in the Envelope of the O-rich Star W Hydrae

    NASA Astrophysics Data System (ADS)

    Muller, Sébastien; Dinh-V-Trung; He, Jin-Hua; Lim, Jeremy

    updating

    We report high angular resolution observations of the HCN (3-2) line emission in the circumstellar envelope of the O-rich star W Hya with the Submillimeter Array. The proximity of this star allows us to image its molecular envelope with a spatial resolution of just ~40 AU, corresponding to about 10 times the stellar diameter. We resolve the HCN (3-2) emission and find that it is centrally peaked and has a roughly spherically symmetrical distribution. This shows that HCN is formed in the innermost region of the envelope (within ~10 stellar radii), which is consistent with predictions from pulsation-driven shock chemistry models, and rules out the scenario in which HCN forms through photochemical reactions in the outer envelope. Our model suggests that the envelope decreases steeply in temperature and increases smoothly in velocity with radius, inconsistent with the standard model for mass-loss driven by radiative pressure on dust grains. We detect a velocity gradient of ~5 km s-1 in the northwest-southeast direction over the central 40 AU. This velocity gradient is reminiscent of that seen in OH maser lines, and could be caused by the rotation of the envelope or by a weak bipolar outflow.

  6. Niflumic acid alters gating of HCN 2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains.

    PubMed

    Cheng, Lan; Sanguinetti, Michael C

    updating

    Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.

  7. Submillimeter Monitoring of the HCN Molecule in Fragment C of the Split Comet 73P/Schwassmann-Wachmann 3

    NASA Astrophysics Data System (ADS)

    Drahus, Michal; Kueppers, M.; Jarchow, C.; Paganini, L.; Hartogh, P.; Villanueva, G. L.

    updating

    Comet 73P/Schwassmann-Wachmann 3 is a member of the Jupiter family which broke up into several fragments in 1995. After the unfavourable return in 2000/2001, the comet passed very close to the Earth in 2006, with the perigee distance below 0.1 AU. Simultaneously, it was well situated on the sky, which resulted in several observing campaigns. We observed this comet using the SMT facility at the Mt. Graham International Observatory in Arizona. In particular, on 5 nights between 10 and 22 May 2006 the HCN molecule in fragment C was spectroscopically monitored, through the J(3-2) and J(4-3) transitions. Using a simplified model, we found the expansion velocity of the HCN coma to be equal to 0.8 ± 0.1 km/s, what is a typical value for a comet at heliocentric distance r = 1 AU. We also reconstructed the production rates Q of this molecule, finding Q(r=1AU) = 2.7 ± 0.1 × 1025 molec/s. Our result is consistent with most of the other estimates, including the CN production rate. Furthermore, taking advantage of the fairly small beam sizes during our campaign (ranging from 600 km to 1200 km in radius), we detected short-term variability of the production rate, presumably stimulated by the nucleus rotation. Although our analysis did not yield a unique rotation period, we found a limited number of possible solutions. We will discuss them in detail along with a comparison with other period claims, and propose a possible scenario that links most of the periodicities reported so far for this comet. The SMT is operated by the Arizona Radio Observatory (ARO), Steward Observatory, University of Arizona.

  8. Searching for Faint Traces of CO(2-1) and HCN (4-3) Gas In Debris Disks

    NASA Astrophysics Data System (ADS)

    Stafford Lambros, Zachary; Hughes, A. Meredith

    updating

    The surprising presence of molecular gas in the debris disks around main sequence stars provides an opportunity to study the dissipation of primordial gas and, potentially, the composition of gas in other solar systems. Molecular gas is not expected to survive beyond the pre-main sequence phase, and it is not yet clear whether the gas is a remnant of the primordial protoplanetary material or whether the gas, like the dust, is second-generation material produced by collisional or photodesorption from planetesimals, exocomets, or the icy mantles of dust grains. Here we present two related efforts to characterize the prevalence and properties of gas in debris disks. First, we place the lowest limits to date on the CO emission from an M star debris disk, using 0.3" resolution observations of CO(2-1) emission from the AU Mic system with the Atacama Large Millimeter/submillimeter Array (ALMA). We place a 3-sigma upper limit on the integrated flux of 0.39 Jy km/s, corresponding to a maximum CO mass of 5e10-6 (Earth Masses) if the gas is in LTE. We also present the results of an ALMA search for HCN(4-3) emission from the prototypical gas-rich debris disk around 49 Ceti at a spatial resolution of 0.3". Despite hosting one of the brightest CO-rich debris disks yet discovered, our observations of 49 Ceti also yield a low upper limit of 0.057 Jy km/s in the HCN line, leaving CO as the only molecule clearly detected in emission from a debris disk. We employ several methods of detecting faint line emission from debris disks, including a model based on Keplerian kinematics as well as a spectral shifting method previously used to detect faint CO emission from the Fomalhaut debris disk, and compare our results.

  9. Down-regulation of T-type Cav3.2 channels by hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN 1): Evidence of a signaling complex

    PubMed Central

    Fan, Jing; Gandini, Maria A.; Zhang, Fang-Xiong; Chen, Lina; Souza, Ivana A.; Zamponi, Gerald W.

    updating

    ABSTRACT Formation of complexes between ion channels is important for signal processing in the brain. Here we investigate the biochemical and biophysical interactions between HCN1 channels and Cav3.2 T-type channels. We found that HCN1 co-immunoprecipitated with Cav3.2 from lysates of either mouse brain or tsA-201 cells, with the HCN1 N-terminus associating with the Cav3.2 N-terminus. Cav3.2 channel activity appeared to be functionally regulated by HCN1. The expression of HCN1 induced a decrease in Cav3.2 Ba2+ influx (IBa2+) along with altered channel kinetics and a depolarizing shift in activation gating. However, a reciprocal regulation of HCN1 by Cav3.2 was not observed. This study highlights a regulatory role of HCN1 on Cav3.2 voltage-dependent properties, which are expected to affect physiologic functions such as synaptic transmission and cellular excitability. PMID:updating

  10. HCN and CN in comet 2P/Encke, a three-dimensional view on comet Encke's outgassing

    NASA Astrophysics Data System (ADS)

    Jockers, K.; Szutowicz, S.

    updating

    Background Simultaneous radio and optical observations of chemically related species in comets promise to supplement each other favorably. High resolution spectra of a submillimeter line provide the distribution of radial velocity. Narrow-band images in the optical region offer the spatial distribution of a species projected into the sky plane perpendicular to the line of sight. Therefore optical and radio observations can in principle be combined into a three-dimensional picture of a comet. A suitable pair of species accessible in the microwave and optical wavelength range is provided by HCN (one of the strongest radio emissions of comets) and CN (strong optical emission). HCN is the most probable parent of CN, but other parents of CN are possible. In this study we use HCN and CN observations of comet it 2P/Encke to address the parental relation of HCN with respect to CN and to investigate the gas outflow from a cometary surface and its dependence on location on the surface (the question of so-called "active vents" or "active areas") and on solar zenith angle. Some known facts about Comet 2P/Encke Comet 2P/Encke is a short period comet. It has the smallest known perihelion distance q = 0.33 AU and a period of 3.28 years. Because of its closeness to the Sun Comet Encke probably is the most evolved comet known. In the optical wavelength range comet Encke does not display a dust tail. Instead a so-called "fan" is observed, a broad feature visible at the solar side of the comet but not directly pointing to the Sun. In the far infrared spectral region Comet Encke displays a huge coma [1] of large dust grains but because of their large size these grains do not contibute significantly to the optical image [2]. In a study based on a large number of historical observations Sekanina [3] has investigated comet Encke's fan-shaped coma. According to this author comet Encke's north rotation pole is located at right ascension 205° and declination 2° (equinox 1950.0). Two vents

  11. A theoretical study of hydrogen complexes of the XH-pi type between propyne and HF, HCL or HCN .

    PubMed

    Tavares, Alessandra M; da Silva, Washington L V; Lopes, Kelson C; Ventura, Elizete; Araújo, Regiane C M U; do Monte, Silmar A; da Silva, João Bosco P; Ramos, Mozart N

    updating

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (pi type) complexes formed by propyne and a HX molecule, where X=F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RCtriple bondC and HX bond lengths. As compared to double-zeta (6-31G**), triple-zeta (6-311G**) basis set leads to an increase of RCtriple bondC bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, DeltaE: propynecdots, three dots, centeredHF>propynecdots, three dots, centeredHCl>propynecdots, three dots, centeredHCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on DeltaE. The smaller effect of ZPE is obtained for propynecdots, three dots, centeredHCN at HF/6-311++G** level, while the greatest difference is obtained at MP2/6-31G** level for propynecdots, three dots, centeredHF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for HX stretching frequency, which is shifted downward.

  12. Lewis acid-base interactions in weakly bound formaldehyde complexes with CO2, HCN , and FCN: considerations on the cooperative H-bonding effects.

    PubMed

    Rivelino, Roberto

    updating

    Ab initio quantum chemistry calculations reveal that HCN and mainly FCN can form Lewis acid-base complexes with formaldehyde associated with cooperative H bonds, as first noticed by Wallen et al. (Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, updating) for CO2-philic materials under supercritical conditions. The present results, obtained with MP2(Full)/aug-cc-pVDZ calculations, show that the degeneracy of the nu(2) mode in free HCN or FCN is removed upon complexation in the same fashion as that of CO2. The splitting of these bands along with the electron structure analysis provides substantial evidence of the interaction of electron lone pairs of the carbonyl oxygen with the electron-deficient carbon atom of the cyanides. Also, this work investigates the role of H bonds acting as additional stabilizing interactions in the complexes by performing the energetic and geometric characterization.

  13. MEG3, HCN 3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways

    PubMed Central

    Tang, Weitao; Dong, Kuiran; Li, Kai; Dong, Rui; Zheng, Shan

    updating

    The purpose of this study was to investigate the differential expression and functional roles of long non-coding RNAs (lncRNAs) in neuroblastoma tissue. LncRNA microarrays were used to identify differentially expressed lncRNAs between tumor and para-tumor tissues. In total, in tumor tissues, 3,098 and 1,704 lncRNAs were upregulated and downregulated, respectively. HCN3 and linc01105 exhibited the higher expression (P HCN3 knockdown all increased apoptosis. The correlation coefficients between those three lncRNAs and the International Neuroblastoma Staging System (INSS) stage were −0.48, −0.58 and −0.55, respectively. In conclusion, we have identified lncRNAs that are differentially expressed in neuroblastoma tissues. The lncRNAs HCN3, linc01105, and MEG3 may be important in biological behaviors of neuroblastoma through mechanisms involving p53 pathway members such as HIF-1α, Noxa, and Bid. The expressions of MEG3, HCN3 and linc01105 are all negatively correlated with the INSS stage. PMID:updating

  14. Rate Coefficients for Reactions of Ethynyl Radical (C2H) With HCN and CH3CN: Implications for the Formation of Comples Nitriles on Titan

    NASA Technical Reports Server (NTRS)

    Hoobler, Ray J.; Leone, Stephen R.

    updating

    Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.

  15. Molecular Reconnaissance of the β Pictoris Gas Disk with the SMA: A Low HCN /(CO+CO2) Outgassing Ratio and Predictions for Future Surveys

    NASA Astrophysics Data System (ADS)

    Matrà, L.; Wilner, D. J.; Öberg, K. I.; Andrews, S. M.; Loomis, R. A.; Wyatt, M. C.; Dent, W. R. F.

    updating

    The exocometary origin of CO gas has been confirmed in several extrasolar Kuiper belts, with CO ice abundances consistent with solar system comets. We here present a molecular survey of the β Pictoris belt with the Submillimeter Array (SMA), reporting upper limits for CN, HCN, HCO+, N2H+, and H2CO, as well as for H2S, CH3OH, SiO, and DCN from archival ALMA data. Nondetections can be attributed to rapid molecular photodissociation due to the A-star’s strong UV flux. CN is the longest lasting and most easily detectable molecule after CO in this environment. We update our nonlocal thermodynamic equilibrium excitation model to include UV fluorescence, finding it plays a key role in CO and CN excitation, and we use it to turn the SMA CN/CO flux ratio constraint into an upper limit of HCN/(CO+CO2) ratio of outgassing rates. This value is consistent with, but at the low end of, the broad range observed in solar system comets. If sublimation dominates outgassing, then this low value may be caused by decreased outgassing for the less volatile molecule HCN compared to CO. If instead UV photodesorption or collisional vaporization of unbound grains dominates outgassing, then this low ratio of rates would imply a low ice abundance ratio, which would in turn indicate a variation in cometary cyanide abundances across planetary systems. To conclude, we make predictions for future molecular surveys and show that CN and HCN should be readily detectable with ALMA around β Pictoris for solar-system-like exocometary compositions.

  16. Thermal formation of hydroxynitriles, precursors of hydroxyacids in astrophysical ice analogs: Acetone ((CH3)2Cdbnd O) and hydrogen cyanide (HCN ) reactivity

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    updating

    Reactivity in astrophysical environments is still poorly understood. In this contribution, we investigate the thermal reactivity of interstellar ice analogs containing acetone ((CH3)2CO), ammonia (NH3), hydrogen cyanide (HCN) and water (H2O) by means of infrared spectroscopy and mass spectrometry techniques, complemented by quantum chemical calculations. We show that no reaction occurs in H2O:HCN:(CH3)2CO ices. Nevertheless, HCN does indeed react with acetone once activated by NH3 into CN- to form 2-hydroxy-2-methylpropanenitrile (HOsbnd C(CH3)2sbnd CN), with a calculated activation energy associated with the rate determining step of about 51 kJ mol-1. This reaction inhibits the formation of 2-aminopropan-2-ol (HOsbnd C(CH3)2sbnd NH2) from acetone and NH3, even in the presence of water, which is the first step of the Strecker synthesis to form 2-aminoisobutyric acid (NH2C(CH3)2COOH). However, HOsbnd C(CH3)2sbnd CN formation could be part of an alternative chemical pathway leading to 2-hydroxy-2-methyl-propanoic acid (HOC(CH3)2COOH), which could explain the presence of hydroxy acids in some meteorites.

  17. SPATIALLY RESOLVED HCN J = 4-3 AND CS J = 7-6 EMISSION FROM THE DISK AROUND HD 142527

    SciTech Connect

    Van der Plas, G.; Casassus, S.; Perez, S.

    updating

    The disk around HD 142527 attracts a great amount of attention compared to others because of its resolved (sub-)millimeter dust continuum that is concentrated into the shape of a horseshoe toward the north of the star. In this Letter we present spatially resolved ALMA detections of the HCN J = 4-3 and CS J = 7-6 emission lines. These lines give us a deeper view into the disk compared to the (optically thicker) CO isotopes. This is the first detection of CS J = 7-6 coming from a protoplanetary disk. Both emission lines are azimuthally asymmetric and are suppressed under the horseshoe-shapedmore » continuum emission peak. A possible mechanism for explaining the decrease under the horseshoe-shaped continuum is the increased opacity coming from the higher dust concentration at the continuum peak. Lower dust and/or gas temperatures and an optically thick radio-continuum reduce line emission by freezing out and shielding emission from the far side of the disk.« less

  18. Structural Insights into the Functional Role of the Hcn Sub-domain of the Receptor-Binding Domain of the Botulinum Neurotoxin Mosaic Serotype C/D

    SciTech Connect

    Zhang, Yanfeng; Gardberg, Anna; Edwards, Tom E.

    Botulinum neurotoxin (BoNT), the causative agent of the deadly neuroparalytic disease botulism, is the most poisonous protein known for humans. Produced by different strains of the anaerobic bacterium Clostridium botulinum, BoNT effects cellular intoxication via a multistep mechanism executed by the three modules of the activated protein. Endocytosis, the first step of cellular intoxication, is triggered by the ~50 kDa, heavy-chain receptor-binding module (HCR) that is specific for a ganglioside and a protein receptor on neuronal cell surfaces. This dual receptor recognition mechanism between BoNT and the host cell’s membrane is well documented and occurs via specific intermolecular interactions withmore » the C-terminal sub-domain, Hcc, of BoNT-HCR. The N-terminal sub-domain of BoNT-HCR, Hcn, comprises ~50% of BoNT-HCR and adopts a B-sheet jelly roll fold. While suspected in assisting cell surface recognition, no unambiguous function for the Hcn sub-domain in BoNT has been indentified. To obtain insights into the potential function of the Hcn sub-domain in BoNT, the first crystal structure of a BoNT with an organic ligand bound to the Hcn sub-domain has been obtained. Here, we describe the crystal structure of BoNT/CD-HCR determined at 1.70 Å resolution with a tetraethylene glycol (PG4) molecule bound in an hydrophobic cleft between B-strands in the B-sheet jelly fold roll of the Hcn sub-domain. The molecule is completely engulfed in the cleft, making numerous hydrophobic (Y932, S959, W966, and D1042) and hydrophilic (S935, W977, L979, N1013, and I1066) contacts with the protein’s side chain and backbone that may mimic in vivo interactions with the phospholipid membranes on neuronal cell surfaces. A sulfate ion was also observed bound to residues T1176, D1177, K1196, and R1243 in the Hcc sub-domain of BoNT/CD-HCR. In the crystal structure of a similar protein, BoNT/D-HCR, a sialic acid« less

  19. Structural insights into the functional role of the Hcn sub-domain of the receptor-binding domain of the botulinum neurotoxin mosaic serotype C/D.

    PubMed

    Zhang, Yanfeng; Gardberg, Anna S; Edwards, Thomas E; Sankaran, Banumathi; Robinson, Howard; Varnum, Susan M; Buchko, Garry W

    updating

    Botulinum neurotoxin (BoNT), the causative agent of the deadly neuroparalytic disease botulism, is the most poisonous protein known for humans. Produced by different strains of the anaerobic bacterium Clostridium botulinum, BoNT effects cellular intoxication via a multistep mechanism executed by the three modules of the activated protein. Endocytosis, the first step of cellular intoxication, is triggered by the ~50 kDa, heavy-chain receptor-binding domain (HCR) that is specific for a ganglioside and a protein receptor on neuronal cell surfaces. This dual receptor recognition mechanism between BoNT and the host cell's membrane is well documented and occurs via specific intermolecular interactions with the C-terminal sub-domain, Hcc, of BoNT-HCR. The N-terminal sub-domain of BoNT-HCR, Hcn, comprises ~50% of BoNT-HCR and adopts a β-sheet jelly roll fold. While suspected in assisting cell surface recognition, no unambiguous function for the Hcn sub-domain in BoNT has been identified. To obtain insights into the potential function of the Hcn sub-domain in BoNT, the first crystal structure of a BoNT with an organic ligand bound to the Hcn sub-domain has been obtained. Here, we describe the crystal structure of BoNT/CD-HCR determined at 1.70 Å resolution with a tetraethylene glycol (PG4) moiety bound in a hydrophobic cleft between β-strands in the β-sheet jelly roll fold of the Hcn sub-domain. The PG4 moiety is completely engulfed in the cleft, making numerous hydrophilic (Y932, S959, W966, and D1042) and hydrophobic (S935, W977, L979, N1013, and I1066) contacts with the protein's side chain and backbone that may mimic in vivo interactions with the phospholipid membranes on neuronal cell surfaces. A sulfate ion was also observed bound to residues T1176, D1177, K1196, and R1243 in the Hcc sub-domain of BoNT/CD-HCR. In the crystal structure of a similar protein, BoNT/D-HCR, a sialic acid molecule was observed bound to the equivalent residues suggesting that residues T

  20. Chemical content of the circumstellar envelope of the oxygen-rich AGB star R Doradus. Non-LTE abundance analysis of CO, SiO, and HCN

    NASA Astrophysics Data System (ADS)

    Van de Sande, M.; Decin, L.; Lombaert, R.; Khouri, T.; de Koter, A.; Wyrowski, F.; De Nutte, R.; Homan, W.

    updating

    Context. The stellar outflows of low- to intermediate-mass stars are characterised by a rich chemistry. Condensation of molecular gas species into dust grains is a key component in a chain of physical processes that leads to the onset of a stellar wind. In order to improve our understanding of the coupling between the micro-scale chemistry and macro-scale dynamics, we need to retrieve the abundance of molecules throughout the outflow. Aims: Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. SiO is thought to play an essential role in the dust-formation process of oxygen-rich AGB stars. The presence of HCN in an oxygen-rich environment is thought to be due to non-equilibrium chemistry in the inner wind. Methods: We analysed molecular transitions of CO, SiO, and HCN measured with the APEX telescope and all three instruments on the Herschel Space Observatory, together with data available in the literature. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. Results: We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the stellar outflow probed by our molecular data. For SiO, we find that the initial abundance lies between 5.5 × 10-5 and 6.0 × 10-5 with respect to H2. The abundance profile is constant up to 60 ± 10 R∗, after which it declines following a Gaussian profile with an e-folding radius of 3.5 ± 0.5 × 1013 cm or 1.4 ± 0.2 R∗. For HCN, we find an initial abundance of 5.0 × 10-7 with respect to H2. The Gaussian profile that describes the decline

  1. Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β1-Adrenergic Receptors and HCN Channels.

    PubMed

    Grzelka, Katarzyna; Kurowski, Przemysław; Gawlak, Maciej; Szulczyk, Paweł

    updating

  2. Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β1-Adrenergic Receptors and HCN Channels

    PubMed Central

    Grzelka, Katarzyna; Kurowski, Przemysław; Gawlak, Maciej; Szulczyk, Paweł

    updating

    The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer’s disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β1- and not α1- or α2-adrenergic receptor stimulation. Activation of β1-adrenergic receptors led to an increase in inward Na+ current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na+/K+ current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β1-adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β1-adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit. PMID

  3. Detections and Sensitive Upper Limits for Methane and Related Trace Gases on Mars during updating, and planned extensions in 2016

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Villanueva, Geronimo L.; Novak, Robert E.

    updating

    Five groups report methane detections on Mars; all results suggest local release and high temporal variability [1-7]. Our team searched for CH4 on many dates and seasons and detected it on several dates [1, 9, 10]. TLS (Curiosity rover) reported methane upper limits [6], and then detections [7] that were consistent in size with earlier reports and that also showed rapid modulation of CH4 abundance.[8] argued that absorption features assigned to Mars 12CH4 by [1] might instead be weak lines of terrestrial 13CH4. If not properly removed, terrestrial 13CH4 signatures would appear on the blue wing of terrestrial 12CH4 even when Mars is red-shifted - but they do not (Fig. S6 of [1]), demonstrating that terrestrial signatures were correctly removed. [9] demonstrated that including the dependence of δ13CH4 with altitude did not affect the residual features, nor did taking δ13CH4 as zero. Were δ13CH4 important, its omission would have overemphasized the depth of 13CH4 terrestrial absorption, introducing emission features in the residual spectra [1]. However, the residual features are seen in absorption, establishing their origin as non-terrestrial - [8] now agrees with this view.We later reported results for multiple organic gases (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), three nitriles (N2O, NH3, HCN) and two chlorinated species (HCl, CH3Cl) [9]. Most of these species cannot be detected with current space assets, owing to instrumental limitations (e.g., spectral resolving power). However, the high resolution infrared spectrometers (NOMAD, ACS) on ExoMars 2016 (Trace Gas Orbiter) will begin measurements in late 2016. In solar occultation, TGO sensitivities will far exceed prior capabilities.We published detailed hemispheric maps of H2O and HDO on Mars, inferring the size of a lost early ocean [10]. In 2016, we plan to acquire 3-D spatial maps of HDO and H2O with ALMA, and improved maps of organics with iSHELL/NASA-IRTF.References: [1] Mumma et al. Sci09

  4. Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN 2 surface expression in the hippocampal CA1 area in rats.

    PubMed

    Luo, Pan; Zhang, Xiaoxue; Lu, Yun; Chen, Cheng; Li, Changjun; Zhou, Mei; Lu, Qing; Xu, Xulin; Shen, Guanxin; Guo, Lianjun

    updating

    Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. HCN and CN in Comet 2P/Encke: Models of the non-isotropic, rotation-modulated coma and CN parent life time

    NASA Astrophysics Data System (ADS)

    Jockers, K.; Szutowicz, S.; Villanueva, G.; Bonev, T.; Hartogh, P.

    updating

    Axisymmetric models of the outgassing of a cometary nucleus have been constructed. Such models can be used to describe a nucleus with a single active region. The models may include a solar zenith angle dependence of the outgassing. They retrieve the outgassing flux at distances from the nucleus where collisions between molecules are unimportant, as function of the angle with respect to the outgassing axis. The observed emissions must be optically thin. Furthermore the models assume that the outflow speed at large distance from the nucleus does not depend on direction. The value of the outflow speed is retrieved. The models are applied to CN images and HCN spectra of Comet 2P/Encke, obtained nearly simultaneously in November 2003 with the 2 m optical telescope on Mount Rozhen, Bulgaria, and with the 10 m Heinrich Hertz Submillimeter Telescope on Mount Graham, Arizona, USA. According to Sekanina (1988), Astron. J. 95, 911-924, at that time a single outgassing source was active. Input parameters to the models like the rotation period of the nucleus and a small correction to Sekanina's rotation axis are determined from a simpler jet position angle model. The rotation is prograde with a sideric period of 11.056 ± 0.024 h, in agreement with literature values. The best fit model has an outflow speed of 0.95 ± 0.04 km s -1. The same value has been derived from the corkscrew appearing in the CN images. The location of the outgassing axis is at colatitude δa = 7.4° ± 2.9° and longitude λa = 235° ± 17° (a definition of zero longitude is provided). Comet Encke's outgassing corresponds approximately to the longitudinally averaged solar input on a spherical nucleus (i.e. very likely comes from deeper layers) but with some deficiency of outgassing at mid-latitudes and non-zero outgassing from the dark polar cap. The presence of gas flow from the dark polar cap is explained as evidence of gas flow across the terminator. The models rely mostly on the CN images. The HCN

  6. A theoretical study of hydrogen complexes of the X sbnd H-π type between propyne and HF, HCL or HCN

    NASA Astrophysics Data System (ADS)

    Tavares, Alessandra M.; da Silva, Washington L. V.; Lopes, Kelson C.; Ventura, Elizete; Araújo, Regiane C. M. U.; do Monte, Silmar A.; da Silva, João Bosco P.; Ramos, Mozart N.

    updating

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (π type) complexes formed by propyne and a HX molecule, where X = F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RC tbnd C and HX bond lengths. As compared to double-ζ (6-31G **), triple-ζ (6-311G **) basis set leads to an increase of RC tbnd C bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, Δ E: propyne&ctdot;HF > propyne&ctdot;HCl > propyne&ctdot;HCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on Δ E. The smaller effect of ZPE is obtained for propyne&ctdot;HCN at HF/6-311++G ** level, while the greatest difference is obtained at MP2/6-31G ** level for propyne&ctdot;HF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for H sbnd X stretching frequency, which is shifted downward.

  7. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H{sub 2}

    SciTech Connect

    Denis-Alpizar, Otoniel, E-mail: nguyenquanghuy@gmail.com; Departamento de Física, Universidad de Matanzas, Matanzas 40100; Kalugina, Yulia

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H{sub 2}. Ab initio calculations of the HCN–H{sub 2} van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H{sub 2} with the nitrogen pointing towards H{sub 2} at an intermolecular separation of 7.20 a{sub 0}. The corresponding well depth is −195.20 cm{sup −1}. A secondary minimum of −183.59 cm{sup −1}more » was found for a T-shape configuration with the H of HCN pointing to the center of mass of H{sub 2}. We also determine the rovibrational energy levels of the HCN–para-H{sub 2} and HCN–ortho-H{sub 2} complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm{sup −1} and 60.26 cm{sup −1}, respectively. The calculated ro-vibrational transitions in the HCN–H{sub 2} complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.« less

  8. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Akagi, S. K.; Barletta, B.; Blake, N. J.; Choi, Y.; Diskin, G. S.; Fried, A.; Fuelberg, H. E.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Wennberg, P. O.; Wiebring, P.; Wisthaler, A.; Yang, M.; Yokelson, R. J.; Blake, D. R.

    updating

    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg-1), followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr-1 in the form of NMVOCs, with approximately 41% of the carbon released as C1-C2 NMVOCs and 21% as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6) ×10-4 g kg-1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3) or methyl chloroform (CH3CCl3) from

  9. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Akagi, S. K.; Barletta, B.; Blake, N. J.; Choi, Y.; Diskin, G. S.; Fried, A.; Fuelberg, H. E.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Wennberg, P. O.; Wiebring, P.; Wisthaler, A.; Yang, M.; Yokelson, R. J.; Blake, D. R.

    updating

    Boreal regions comprise about 17 % of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg-1), followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr-1 in the form of NMVOCs, with approximately 41 % of the carbon released as C1-C2 NMVOCs and 21 % as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6) × 10-4 g kg-1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3) or methyl chloroform (CH3CCl3

  10. A novel 'splice site' HCN 4 Gene mutation, c.1737+1 G>T, causes familial bradycardia, reduced heart rate response, impaired chronotropic competence and increased short-term heart rate variability.

    PubMed

    Hategan, Lidia; Csányi, Beáta; Ördög, Balázs; Kákonyi, Kornél; Tringer, Annamária; Kiss, Orsolya; Orosz, Andrea; Sághy, László; Nagy, István; Hegedűs, Zoltán; Rudas, László; Széll, Márta; Varró, András; Forster, Tamás; Sepp, Róbert

    updating

    The most important molecular determinant of heart rate regulation in sino-atrial pacemaker cells includes hyperpolarization-activated, cyclic nucleotide-gated ion channels, the major isoform of which is encoded by the HCN4 gene. Mutations affecting the HCN4 gene are associated primarily with sick sinus syndrome. A novel c.1737+1 G>T 'splice-site' HCN4 mutation was identified in a large family with familial bradycardia which co-segregated with the disease providing a two-point LOD score of 4.87. Twelve out of the 22 investigated family members [4 males, 8 females average age 36 (SD 6) years] were considered as clinically affected (heart rateHCN4 gene mutation, c.1737+1 G>T, causes familial bradycardia and leads to reduced heart rate response, impaired chronotropic competence and increased short-term heart rate variability in the mutation carriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Qualification of a Multi-Channel Infrared Laser Absorption Spectrometer for Monitoring CO, HCl, HCN , HF, and CO2 Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Meyer, Marit E.; Kulis, Michael J.; Berger, Gordon M.

    updating

    Monitoring of specific combustion products can provide early-warning detection of accidental fires aboard manned spacecraft and also identify the source and severity of combustion events. Furthermore, quantitative in situ measurements are important for gauging levels of exposure to hazardous gases, particularly on long-duration missions where analysis of returned samples becomes impractical. Absorption spectroscopy using tunable laser sources in the 2 to 5 micrometer wavelength range enables accurate, unambiguous detection of CO, HCl, HCN, HF, and CO2, which are produced in varying amounts through the heating of electrical components and packaging materials commonly used aboard spacecraft. Here, we report on calibration and testing of a five-channel laser absorption spectrometer designed to accurately monitor ambient gas-phase concentrations of these five compounds, with low-level detection limits based on the Spacecraft Maximum Allowable Concentrations. The instrument employs a two-pass absorption cell with a total optical pathlength of 50 cm and a dedicated infrared semiconductor laser source for each target gas. We present results from testing the five-channel sensor in the presence of trace concentrations of the target compounds that were introduced using both gas sources and oxidative pyrolysis (non-flaming combustion) of solid material mixtures.

  12. Membrane potential oscillations are not essential for spontaneous firing generation in L4 Aβ-afferent neurons after L5-spinal nerve axotomy and are not mediated by HCN channels.

    PubMed

    Djouhri, L; Smith, T; Alotaibi, M; Weng, X

    updating

    What is the central question of this study? Is spontaneous activity (SA) in L4-DRG neurons induced by L5 spinal nerve axotomy is associated with membrane potentials oscillations in theses neurons, and are these membrane oscillations mediated by HCN channels? What is the main finding and its importance? Unlike injured L5 DRG neurons which have been shown to be incapable of firing spontaneously without membrane potentials oscillations, such membrane oscillations are not essential for SA generation in conducting "uninjured'' L4 neurons, and they are not mediated by HCN channels. These findings suggest that the underlying cellular mechanisms of SA in injured and "uninjured'' DRG neurons induced by spinal nerve injury are distinct. The underlying cellular and molecular mechanisms of peripheral neuropathic pain are not fully understood. However, preclinical studies using animal models of this debilitating condition suggest that it is driven partly by aberrant spontaneous activity (SA) in injured and uninjured dorsal root ganglion (DRG) neurons, and that SA in injured DRG neurons is triggered by subthreshold membrane potential oscillations (SMPOs). Here, using in vivo intracellular recording from control L4-DRG neurons, and ipsilateral L4-DRG neurons in female Wistar rats that had previously undergone L5-spinal nerve axotomy (SNA), we examined whether conducting 'uninjured' L4-DRG neurons in SNA rats exhibit SMPOs, and if so, whether such SMPOs are associated with SA in those L4-neurons, and whether they are mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We found that 7-days after SNA: (a) none of control A- or C-fibre DRG neurons showed SMPOs or SA, but 50%, 43% and 0% of spontaneously active cutaneous L4 Aβ-low threshold mechanoreceptors, Aβ-nociceptors and C-nociceptors exhibited SMPOs respectively in SNA rats with established neuropathic pain behaviors, (b) neither SMPOs nor SA in L4 Aβ-neurons were suppressed by blocking HCN

  13. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN )

    NASA Astrophysics Data System (ADS)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    updating

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  14. Structural Changes and Lack of HCN 1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber).

    PubMed

    Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J; Koch, Ursula

    updating

    Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.

  15. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    PubMed

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    updating

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  16. Multiconfiguration Self-Consistent Field Study on Formonitrile Imine and N-Substituted Nitrile Imines HCN 2-R: Energy Component Analysis of the Pseudo-Jahn-Teller Effect.

    PubMed

    Toyota, Azumao; Muramatsu, Takashi; Koseki, Shiro

    updating

    Stable geometrical structures for formonitrile imine (1) and N-substituted nitrile imines HCN 2 -R (R = Li, BeH, BH 2 , CH 3 , CN, CCH, C 6 H 5 , NH 2 , OH, and F) (2-11) were examined by using the multiconfiguration self-consistent-field (MCSCF) method followed by second-order configuration interaction (SOCI) calculations and second-order multiconfiguration quasi-degenerate perturbation theory (MCQDPT2) calculations, together with the aug-cc-pVTZ basis sets. The results show that 1 suffers a pseudo-Jahn-Teller (JT) distortion from a linear C ∞v structure to a C 1 structure via a planar bent C s structure. Each of the others is found to undergo pseudo-JT distortion from a symmetrical structure to a planar bent C s structure for 2, 3, and 7 and to a C 1 structure for 4, 5, 6, 8, 9, 10, and 11. At the stationary structures of 1-11, the structural characteristics were briefly discussed in terms of allenic and propargylic. To elucidate the nature of pseudo-JT distortions, energy component analyses were carried out at the MCSCF+SOCI level of theory at all of the stationary structures for the relevant molecules. In most of the molecules examined, pseudo-JT stabilizations were classified into two groups, one in which the stability arises from a lowering of the energy of the attractive term V en and the other in which the stability results from a lowering of the energy of the repulsive terms V nn and V ee . In addition to the above two groups, it was also found that the following three groups are responsible for the pseudo-JT stabilizations in a certain stage of the structural changes. Namely, one is a lowering of the energy of the term V ee observed in 6, another is a lowering of the energy of the terms V ee and V en observed in 9-11, and the other is a lowering of the energy of the terms V en and V nn observed in 10. These energetic behaviors were accounted in terms of an elongation or a contraction of the molecular skeleton, a migration of electrons from one part of

  17. A SIFT ion-molecule study of some reactions in Titan's atmosphere. reactions of N(+), N(2)(+), and HCN (+) with CH(4), C(2)H(2), and C(2)H(4)

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Wilson, Paul; McEwan, Murray J.

    updating

    The results of a study of the ion-molecule reactions of N(+), N(2)(+), and HCN(+) with methane, acetylene, and ethylene are reported. These studies were performed using the FA-SIFT at the University of Canterbury. The reactions studied here are important to understanding the ion chemistry in Titan's atmosphere. N(+) and N(2)(+) are the primary ions formed by photo-ionization and electron impact in Titan's ionosphere and drive Titan's ion chemistry. It is therefore very important to know how these ions react with the principal trace neutral species in Titan's atmosphere: Methane, acetylene, and ethylene. While these reactions have been studied before the product channels have been difficult to define as several potential isobaric products make a definitive answer difficult. Mass overlap causes difficulties in making unambiguous species assignments in these systems. Two discriminators have been used in this study to resolve the mass overlap problem. They are deuterium labeling and also the differences in reactivities of each isobar with various neutral reactants. Several differences have been found from the products in previous work. The HCN(+) ion is important in both Titan's atmosphere and in the laboratory.

  18. Chemical Characteristics of Continental Outflow Over the Tropical South Atlantic Ocean from Brazil and Africa

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Bradshaw, J. D.; Sandholm, S. T.; Smyth, S.; Blake, D. R.; Blake, N. R.; Sachse, G. W.; Collins, J. E.; Heikes, B. G.; Anderson, B. E.;

    updating

    The chemical characteristics of air parcels over the tropical South Atlantic during September - October 1992 are summarized by analysis of aged marine and continental outflow classifications. Positive correlations between CO and CH3CL and minimal enhancements of C2CL40, and various ChloroFluoroCarbon (CFC) species in air parcels recently advected over the South Atlantic basin strongly suggest an impact on tropospheric chemistry from biomass burning on adjacent continental areas of Brazil and Africa. Comparison of the composition of aged Pacific air with aged marine air over the South Atlantic basin from 0.3 to 12.5 km altitude indicates potential accumulation of long-lived species during the local dry season. This may amount to enhancements of up to two-fold for C2H6, 30% for CO, and 10% for CH3Cl. Nitric oxide and NO(x) were significantly enhanced (up to approx. 1 part per billion by volume (ppbv)) above 10 km altitude and poorly correlated with CO and CH3Cl. In addition, median mixing ratios of NO and NO(x) were essentially identical in aged marine and continental outflow air masses. It appears that in addition to biomass burning, lightning or recycled reactive nitrogen may be an important source of NO(x) to the upper troposphere. Methane exhibited a monotonic increase with altitude from approx. 1690 to 1720 ppbv in both aged marine and continental outflow air masses. The largest mixing ratios in the upper troposphere were often anticorrelated with CO, CH3Cl, and CO2, suggesting CH, contributions from natural sources. We also argue, based on CH4/CO ratios and relationships with various hydrocarbon and CFC species, that inputs from biomass burning and the northern hemisphere are unlikely to be the dominant sources of CO, CH4 and C2H6 in aged marine air. Emissions from urban areas would seem to be necessary to account for the distribution of at least CH4 and C2H6. Over the African and South American continents an efficient mechanism of convective vertical transport

  19. The Composition of Comet C 2012 K1 (PanSTARRS) and the Distribution of Primary Volatile Abundances Among Comets

    NASA Technical Reports Server (NTRS)

    Roth, Nathan X.; Gibb, Erika; Bonev, Boncho P.; Disanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas

    updating

    On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C2012 K1 (PanSTARRS) using the long-slit, high resolution ( lambda/delta lambda is approximately or equal to 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, and CO). Upper limits were derived for C2H2, NH3, and H2CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH3OH and C2H6 are enriched while H2CO, CH4, and possibly C2H2 are depleted. When placed in context with comets observed in the near- infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C2H6, CH3OH, CH4) among the comet population. The level of enrichment or depletion in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.

  20. Some problems in interpretation of the New Horizons observations of Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    updating

    Here I briefly discuss the following problems related to Pluto's atmosphere: (1) restrictions to LTE in the rotational lines of H2O and HCN above 700 km that affect thermal balance of the atmosphere; (2) contradictions in the estimates of H2O influx from ablation of the interplanetary dust; (3) great difference between the haze volume surface area in the LORRI and MVIC observations and that in the UV solar occultations and the models, including significant corrections to sticking coefficients of C2H2, C2H4, C2H6, and HCN in condensation, and (4) Triton's thermosphere during the Voyager 2 flyby.

  1. Ion-molecule reactions relevant to Titan's ionosphere.

    NASA Astrophysics Data System (ADS)

    McEwan, M. J.; Scott, G. B. I.; Anicich, V. G.

    updating

    Twenty four new ion-molecule reactions are presented for inclusion in the modeling of the ionosphere of Saturn's satellite Titan. Sixteen reactions were re-examined to reduce uncertainties in the previous literature results. In this study the authors have examined the reactions of N+ and N2+ with CH4, C2H2, C2H4, C2H6, HCN, CH2CHCN and HC3N; the reaction of N+ with CH3CN; the reactions of C3H5+ with CH4, C2H2 C2H4, C2H6, H2, HCN, HC3N and CH2CHCN; the reactions of C2N2+ with C2H2; C2H2+ and C2N2; C2H4 with C2H3+, C2H4+, CHCCNH+, and HC5N+; HCNH+ with C2H6; C3H6+ with C3H6; HCN with C2H6+, C3H6+, c-C3H6+, C2N2+ and NO+; N2 with C2H2+ and C2H5+; C2H4+ and HC3N. The ions selected for this study were derived either from nitrogen, appropriate hydrocarbons or nitriles. The reactant neutrals were selected on the basis of their known presence in Titan's atmosphere. The reaction products are consistent with the expected increase in ion size through ion-molecule reaction processing. Data are also presented for the reactions of 23 ions with molecular nitrogen. Almost all of these ions are unreactive with N2.

  2. Ex situ generation of stoichiometric HCN and its application in the Pd-catalysed cyanation of aryl bromides: evidence for a transmetallation step between two oxidative addition Pd-complexes.

    PubMed

    Kristensen, Steffan K; Eikeland, Espen Z; Taarning, Esben; Lindhardt, Anders T; Skrydstrup, Troels

    updating

    A protocol for the Pd-catalysed cyanation of aryl bromides using near stoichiometric and gaseous hydrogen cyanide is reported for the first time. A two-chamber reactor was adopted for the safe liberation of ex situ generated HCN in a closed environment, which proved highly efficient in the Ni-catalysed hydrocyanation as the test reaction. Subsequently, this setup was exploited for converting a range of aryl and heteroaryl bromides (28 examples) directly into the corresponding benzonitriles in high yields, without the need for cyanide salts. Cyanation was achieved employing the Pd(0) precatalyst, P( t Bu) 3 -Pd-G3 and a weak base, potassium acetate, in a dioxane-water solvent mixture. The methodology was also suitable for the synthesis of 13 C-labelled benzonitriles with ex situ generated 13 C-hydrogen cyanide. Stoichiometric studies with the metal complexes were undertaken to delineate the mechanism for this catalytic transformation. Treatment of Pd(P( t Bu) 3 ) 2 with H 13 CN in THF provided two Pd-hydride complexes, (P( t Bu) 3 ) 2 Pd(H)( 13 CN), and [(P( t Bu) 3 )Pd(H)] 2 Pd( 13 CN) 4 , both of which were isolated and characterised by NMR spectroscopy and X-ray crystal structure analysis. When the same reaction was performed in a THF : water mixture in the presence of KOAc, only (P( t Bu) 3 ) 2 Pd(H)( 13 CN) was formed. Subjection of this cyano hydride metal complex with the oxidative addition complex (P( t Bu) 3 )Pd(Ph)(Br) in a 1 : 1 ratio in THF led to a transmetallation step with the formation of (P( t Bu) 3 ) 2 Pd(H)(Br) and 13 C-benzonitrile from a reductive elimination step. These experiments suggest the possibility of a catalytic cycle involving initially the formation of two Pd(ii)-species from the oxidative addition of L n Pd(0) into HCN and an aryl bromide followed by a transmetallation step to L n Pd(Ar)(CN) and L n Pd(H)(Br), which both reductively eliminate, the latter in the presence of KOAc, to generate the benzonitrile and L n Pd(0).

  3. High-dispersion infrared spectroscopic observations of comet 8P/Tuttle with VLT/CRIRES

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Bockelée-Morvan, D.; Kawakita, H.; Dello Russo, N.; Jehin, E.; Manfroid, J.; Smette, A.; Hutsemékers, D.; Stüwe, J.; Weiler, M.; Arpigny, C.; Biver, N.; Cochran, A.; Crovisier, J.; Magain, P.; Sana, H.; Schulz, R.; Vervack, R. J.; Weaver, H.; Zucconi, J.-M.

    updating

    We report on the composition of the Halley-family comet (HFC) 8P/Tuttle investigated with high-dispersion near-infrared spectroscopic observations. The observations were carried out at the ESO VLT (Very Large Telescope) with the CRIRES instrument as part of a multi-wavelength observation campaign of 8P/Tuttle performed in late January and early February 2008. Radar observations suggested that 8P/Tuttle is a contact binary, and it was proposed that these components might be heterogeneous in chemistry. We determined mixing ratios of organic volatiles with respect to H2O and found that mixing ratios were consistent with previous near infrared spectroscopic observations obtained in late December 2007 and in late January 2008. It has been suggested that because 8P/Tuttle is a contact binary, it might be chemically heterogeneous. However, we find no evidence for chemical heterogeneity within the nucleus of 8P/Tuttle. We also compared the mixing ratios of organic molecules in 8P/Tuttle with those of both other HFCs and long period comets (LPCs) and found that HCN, C2H2, and C2H6 are depleted whereas CH4 and CH3OH have normal abundances. This may indicate that 8P/Tuttle was formed in a different region of the early solar nebula than other HFCs and LPCs. We estimated the conversion efficiency from C2H2 to C2H6 by hydrogen addition reactions on cold grains by employing the C2H6/(C2H6+C2H2) ratio. The C2H6/(C2H6+C2H2) ratio in 8P/Tuttle is consistent with the ratios found in other HFCs and LPCs within the error bars. We also discuss the source of C2 and CN based on our observations and conclude that the abundances of C2H2 and C2H6 are insufficient to explain the C2 abundances in comet 8P/Tuttle and that the abundance of HCN is insufficient to explain the CN abundances in the comet, so at least one additional parent is needed for each species, as pointed out in previous study. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Prog. 080.C

  4. Cooperative and diminutive unusual weak bonding in F3CX···HMgH···Y and F3CX···Y···HMgH trimers (X = Cl, Br; Y = HCN , and HNC).

    PubMed

    Solimannejad, Mohammad; Malekani, Masumeh; Alkorta, Ibon

    updating

    MP2 calculations with cc-pVTZ basis set were used to analyze intermolecular interactions in F(3)CX···HMgH···Y and F(3)CX···Y···HMgH triads (X = Cl, Br; Y = HCN, and HNC) which are connecting with three kinds of unusual weak interactions, namely halogen-hydride, dihydrogen, and σ-hole. To understand the properties of the systems better, the corresponding dyads are also studied. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads were investigated at the MP2/cc-pVTZ computational level. Particular attention is given to parameters such as cooperative energies, cooperative dipole moments, and many-body interaction energies. Those complexes with simultaneous presence of a σ-hole bond and a dihydrogen bond show cooperativity energy ranging between -1.02 and -2.31 kJ mol(-1), whereas those with a halogen-hydride bond and a dihydrogen bond are diminutive, with this energetic effect between 0.1 and 0.63 kJ mol(-1). The electronic properties of the complexes have been analyzed using the molecular electrostatic potential (MEP), the electron density shift maps, and the parameters derived from the atoms in molecules (AIM) methodology.

  5. The MALATANG Survey: The L GAS–L IR Correlation on Sub-kiloparsec Scale in Six Nearby Star-forming Galaxies as Traced by HCN J = 4 → 3 and HCO+ J = 4 → 3

    NASA Astrophysics Data System (ADS)

    Tan, Qing-Hua; Gao, Yu; Zhang, Zhi-Yu; Greve, Thomas R.; Jiang, Xue-Jian; Wilson, Christine D.; Yang, Chen-Tao; Bemis, Ashley; Chung, Aeree; Matsushita, Satoki; Shi, Yong; Ao, Yi-Ping; Brinks, Elias; Currie, Malcolm J.; Davis, Timothy A.; de Grijs, Richard; Ho, Luis C.; Imanishi, Masatoshi; Kohno, Kotaro; Lee, Bumhyun; Parsons, Harriet; Rawlings, Mark G.; Rigopoulou, Dimitra; Rosolowsky, Erik; Bulger, Joanna; Chen, Hao; Chapman, Scott C.; Eden, David; Gear, Walter K.; Gu, Qiu-Sheng; He, Jin-Hua; Jiao, Qian; Liu, Dai-Zhong; Liu, Li-Jie; Li, Xiao-Hu; Michałowski, Michał J.; Nguyen-Luong, Quang; Qiu, Jian-Jie; Smith, Matthew W. L.; Violino, Giulio; Wang, Jian-Fa; Wang, Jun-Feng; Wang, Jun-Zhi; Yeh, Sherry; Zhao, Ying-He; Zhu, Ming

    updating

    We present {HCN} J=4\\to 3 and {HCO}}+ J=4\\to 3 maps of six nearby star-forming galaxies, NGC 253, NGC 1068, IC 342, M82, M83, and NGC 6946, obtained with the James Clerk Maxwell Telescope as part of the MALATANG survey. All galaxies were mapped in the central 2‧ × 2‧ region at 14″ (FWHM) resolution (corresponding to linear scales of ∼0.2–1.0 kpc). The L IR–L‧dense relation, where the dense gas is traced by the {HCN} J=4\\to 3 and the {HCO}}+ J=4\\to 3 emission, measured in our sample of spatially resolved galaxies is found to follow the linear correlation established globally in galaxies within the scatter. We find that the luminosity ratio, L IR/L‧dense, shows systematic variations with L IR within individual spatially resolved galaxies, whereas the galaxy-integrated ratios vary little. A rising trend is also found between L IR/L‧dense ratio and the warm-dust temperature gauged by the 70 μm/100 μm flux ratio. We find that the luminosity ratios of IR/HCN (4–3) and IR/HCO+ (4–3), which can be taken as a proxy for the star formation efficiency (SFE) in the dense molecular gas (SFEdense), appear to be nearly independent of the dense gas fraction (f dense) for our sample of galaxies. The SFE of the total molecular gas (SFEmol) is found to increase substantially with f dense when combining our data with those on local (ultra)luminous infrared galaxies and high-z quasars. The mean L{{\\prime} }HCN(4{--}3)}/L{{\\prime} }HCO}+(4{--}3)} line ratio measured for the six targeted galaxies is 0.9 ± 0.6. No significant correlation is found for the L{{\\prime} }HCN(4{--}3)}/L{{\\prime} }HCO}+(4{--}3)} ratio with the star formation rate as traced by L IR, nor with the warm-dust temperature, for the different populations of galaxies.

  6. Observation of different core water cluster ions Y-(H2O)n (Y = O2, HCN , HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    updating

    -lived core ions HCN-, NOx- and COx- were mainly produced at higher field strength. Furthermore, the use of the discharge system coupled to mass spectrometers led to the stable formation of large water clusters Y-(H2O)n due to adiabatic expansion caused by the pressure difference between the ambient discharge area (760 torr) and vacuum region in the mass spectrometers (≈ 1 torr). Here we show the resulting mass spectra of large water clusters Y-(H2O)n (0 ≤ n ≥ 80) with the dominant negative core ion Y- such as O2-, HO-, HO2-, HCN-, NO2-, NO3-, NO3-(HNO3)2, CO3- and HCO4- which play a central role in tropospheric ion chemistry, as well as the detailed mechanism of formation of those negative ion water clusters by atmospheric pressure DC corona discharge mass spectrometry. Here we also provide new thermochemical information about magic numbers and first hydrated shells for individual negative core ions Y-, which have particular stability in the Y-(H2O)n cluster series, by using the reliable mass spectrometry data obtained and the relationship between the temperature condition in a reaction chamber and the resulting cluster distribution.

  7. Ivabradine prolongs phase 3 of cardiac repolarization and blocks the hERG1 (KCNH2) current over a concentration-range overlapping with that required to block HCN 4.

    PubMed

    Lees-Miller, James P; Guo, Jiqing; Wang, Yibo; Perissinotti, Laura L; Noskov, Sergei Y; Duff, Henry J

    updating

    In Europe, ivabradine has recently been approved to treat patients with angina who have intolerance to beta blockers and/or heart failure. Ivabradine is considered to act specifically on the sinoatrial node by inhibiting the If current (the funny current) to slow automaticity. However, in vitro studies show that ivabradine prolongs phase 3 repolarization in ventricular tissue. No episodes of Torsades de Pointes have been reported in randomized clinical studies. The objective of this study is to assess whether ivabradine blocked the hERG1 current. In the present study we discovered that ivabradine prolongs action potential and blocks the hERG current over a range of concentrations overlapping with those required to block HCN4. Ivabradine produced tonic, rather than use-dependent block. The mutation Y652A significantly suppressed pharmacologic block of hERG by ivabradine. Disruption of C-type inactivation also suppressed block of hERG1 by ivabradine. Molecular docking and molecular dynamics simulations indicate that ivabradine may access the inner cavity of the hERG1 via a lipophilic route and has a well-defined binding site in the closed state of the channel. Structural organization of the binding pockets for ivabradine is discussed. Ivabradine blocks hERG and prolongs action potential duration. Our study is potentially important because it indicates the need for active post marketing surveillance of ivabradine. Importantly, proarrhythmia of a number of other drugs has only been discovered during post marketing surveillance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Genetic Perturbations Suggest a Role of the Resting Potential in Regulating the Expression of the Ion Channels of the KCNA and HCN families in Octopus Cells of the Ventral Cochlear Nucleus

    PubMed Central

    Cao, Xiao-Jie; Oertel, Donata

    updating

    Low-voltage-activated K+ (gKL) and hyperpolarization-activated mixed cation conductances (gh) mediate currents, IKL and Ih, through channels of the Kv1 (KCNA) and HCN families respectively and give auditory neurons the temporal precision required for signaling information about the onset, fine structure, and time of arrival of sounds. Being partially activated at rest, gKL and gh contribute to the resting potential and shape responses to even small subthreshold synaptic currents. Resting gKL and gh also affect the coupling of somatic depolarization with the generation of action potentials. To learn how these important conductances are regulated we have investigated how genetic perturbations affect their expression in octopus cells of the ventral cochlear nucleus (VCN). We report five new findings: First, the magnitude of gh and gKL varied over more than two-fold between wild type strains of mice. Second, average resting potentials are not different in different strains of mice even in the face of large differences in average gKL and gh. Third, IKL has two components, one being α-dendrotoxin (α-DTX)-sensitive and partially inactivating and the other being α-DTX-insensitive, tetraethylammonium (TEA)-sensitive, and non-inactivating. Fourth, the loss of Kv1.1 results in diminution of the α-DTX-sensitive IKL, and compensatory increased expression of an α-DTX-insensitive, tetraethylammonium (TEA)-sensitive IKL. Fifth, Ih and IKL are balanced at the resting potential in all wild type and mutant octopus cells even when resting potentials vary in individual cells over nearly 10 mV, indicating that the resting potential influences the expression of gh and gKL. The independence of resting potentials on gKL and gh shows that gKL and gh do not, over days or weeks, determine the resting potential but rather that the resting potential plays a role in regulating the magnitude of either or both gKL and gh. PMID:updating

  9. Broadening of spectral lines of CO2, N2O , H2CO, HCN , and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    NASA Astrophysics Data System (ADS)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    updating

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.updating. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  10. Animal Model Selection for Inhalational HCN Exposure

    DTIC Science & Technology

    updating

    temperature and pressure). Health Effects from CN Exposure Cardiovascular responses to CN are complex and include precordial pain and EKG abnormalities...thyroid) may be affected, the brain is selectively sensitive given its high oxygen consumption and low rhodanese content, an enzyme involved in CN...efficiency of oxygenation while in dorsal recumbency under anesthesia, is decreased slightly compared to humans. The alveolar ventilation and perfusion (VA/Q

  11. Atlas of Absorption Lines from 0 to 17900 cm-1

    DTIC Science & Technology

    updating

    Hampton, Virginia H. M. Pickett Jet Propulsion Laboratory Pasadena, California D. J. Richardson and J. S. Namkung ST Systems Corporation (STX...2 NH3 HN03 OH HF HCi HBr HI CIO OCS H2CO H0C1 N2 HCN CH3C! H202 C2H2 C2H6 PH3 Oj(JPL) +- 0(3P)(JPL) H02(JPL) Solor CO...Hanscom AFB, Massachusetts. H. M. Pickett: Jet Propulsion Laboratory, Pasadena, California. D. J. Richardson and J. S. Namkung: ST Systems Corporation

  12. Substrate dependence of electron-stimulated O - yields from dissociative electron attachment to physisorbed O2

    NASA Astrophysics Data System (ADS)

    Huels, M. A.; Parenteau, L.; Sanche, L.

    updating

    We present measurements of O- electron stimulated desorption yields obtained under identical experimental conditions from 0.15 monolayers (ML) of O2 deposited onto disordered substrates consisting of 4 ML of either Kr, Xe, C2H6, C2H4, N2O, CH3Cl, or H2O, all condensed on Pt (polycrystalline). The resulting O- yield functions, for incident electron energies below 20 eV, are compared to that obtained from the O2/Kr solid; this allows us to assess the order of magnitude effects of the local substrate environment on dissociative electron attachment (DEA) via the 2Πu and gas phase forbidden 2Σ+g,u resonances of O-2. We note that, in addition to electron energy losses in the substrate prior to DEA to O2 and post-dissociation interactions of the O- with the substrate molecules, charge or energy transfer from the O-2 transient anion to a substrate molecule, and capture of the incident electron into a dissociative anion resonance of the substrate molecule may contribute to a reduced O- yield from the physisorbed O2. In the case of O2 deposited on amorphous ice, we find that the O- signal from DEA to O2 is completely absent for electron energies below 14 eV; we attribute this to a complete quenching of the dissociative O-2(2Πu, 2Σ+) resonances by the adjacent water molecules.

  13. HCN J = 4–3, HNC J = 1–0, H13CN J = 1–0, and HC3N J = 10–9 Maps of the Galactic Center Region. I. Spatially Resolved Measurements of Physical Conditions and Chemical Composition

    NASA Astrophysics Data System (ADS)

    Tanaka, Kunihiko; Nagai, Makoto; Kamegai, Kazuhisa; Iino, Takahiro; Sakai, Takeshi

    updating

    This supplement paper presents the maps of HCN J = 4–3, HNC J = 1–0, {{{H}}}13{CN} J = 1–0, and HC3N J = 10–9 for the Galactic central molecular zone (CMZ), which have been obtained using the Atacama Submillimeter Telescope Experiment and Nobeyama Radio Observatory 45 m telescope. Three-dimensional maps (2D in space and 1D in velocity) of the gas kinetic temperature (T kin), hydrogen volume density ({n}{{{H}}2}), and fractional abundances of eight molecules (HCN, HNC, {HC}}3{{N}}, HCO+, {{{H}}}2{CO}, SiO, CS, and {{{N}}}2{{{H}}}+) have been constructed from our and archival data. We have developed a method with hierarchical Bayesian inference for this analysis, which has successfully suppressed the artificial correlations among the parameters created by systematic errors due to the deficiency in the simple one-zone excitation analysis and the calibration uncertainty. The typical values of T kin and {n}{{{H}}2} are {10}1.8 {{K}} and {10}4.2 {cm}}-3, respectively, and the presence of an additional cold, low-density component is also indicated. The distribution of high-temperature regions is poorly correlated with known active star-forming regions, while a few of them coincide with shocked clouds. Principal component analysis has identified two distinct groups in the eight analyzed molecules: one group with large PC1 and PC2 scores, and the other with a large T kin dependence, which could be explained using two regimes of shock chemistry with fast (≳ 20 {km} {{{s}}}-1) and slow (≲ 20 {km} {{{s}}}-1) velocity shocks, respectively. This supports the idea that the mechanical sputtering of dust grains and the mechanical heating play primary roles in the chemical and thermal processes in CMZ clouds.

  14. Chemical Composition of Asian Continental Outflow over the Western Pacific: Results from Transport and Chemical Evolution over the Pacific (TRACE-P)

    NASA Technical Reports Server (NTRS)

    Russo, R. S.; Talbot, R. W.; Dibb, J. E.; Scheuer, E.; Seid, G.; Jordan, C. E.; Fuelberg, H. E.; Sachse, G. W.; Avery, M. A.; Vay, S. A.

    updating

    We characterize the chemical composition of Asian continental outflow observed during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) mission during February-April 2001 in the western Pacific using data collected on the NASA DC-8 aircraft. A significant anthropogenic impact was present in the free troposphere and as far east as 150degE longitude reflecting rapid uplift and transport of continental emissions. Five-day backward trajectories were utilized to identify five principal Asian source regions of outflow: central, coastal, north-northwest(NNW), southeast (SE), and west-southwest (WSW). The maximum mixing ratios for several species, such as CO, C2Cl4, CH3Cl, and hydrocarbons, were more than a factor of 2 larger in the boundary layer of the central and coastal regions due to industrial activity in East Asia. CO was well correlated with C2H2, C2H6, C2Cl4, and CH3Cl at low altitudes in these two regions (r(sup 2) approx. updating). The NNW, WSW, and SE regions were impacted by anthropogenic sources above the boundary layer presumably due to the longer transport distances of air masses to the western Pacific. Frontal and convective lifting of continental emissions was most likely responsible for the high altitude outflow in these three regions. Photochemical processing was influential in each source region resulting in enhanced mixing ratios of O3, PAN, HNO3, H2O2, and CH3OOH. The air masses encountered in all five regions were composed of a complex mixture of photcrchemically aged air with more recent emissions mixed into the outflow as indicated by enhanced hydrocarbon ratios (C2H2/CO greater than or equal to 3 and C3H8/C2H6 greater than or equal to 0.2). Combustion, industrial activities, and the burning of biofuels and biomass all contributed to the chemical composition of air masses from each source region as demonstrated by the H6, SO2, and C2Cl4 were compared for the TRACE-P and PEM-West B missions. In the more northern regions, O3, CO

  15. High-resolution 3-μm spectra of Jupiter: Latitudinal spectral variations influenced by molecules, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Sang J.; Geballe, T. R.; Kim, J. H.; Jung, A.; Seo, H. J.; Minh, Y. C.

    updating

    We present latitudinally-resolved high-resolution ( R = 37,000) pole-to-pole spectra of Jupiter in various narrow longitudinal ranges, in spectral intervals covering roughly half of the spectral range updating μm. We have analyzed the data with the aid of synthetic spectra generated from a model jovian atmosphere that included lines of CH 4, CH 3D, NH 3, C 2H 2, C 2H 6, PH 3, and HCN, as well as clouds and haze. Numerous spectral features of many of these molecular species are present and are individually identified for the first time, as are many lines of H3+ and a few unidentified spectral features. In both polar regions the updating-μm continuum is more than 10 times weaker than in spectra at lower latitudes, implying that in this wavelength range the single-scattering albedos of polar haze particles are very low. In contrast, the updating μm the weak polar and equatorial continua are of comparable intensity. We derive vertical distributions of NH 3, C 2H 2 and C 2H 6, and find that the mixing ratios of NH 3 and C 2H 6 show little variation between equatorial and polar regions. However, the mixing ratios of C 2H 2 in the northern and southern polar regions are ˜6 and ˜3 times, respectively, less than those in the equatorial regions. The derived mixing ratio curves of C 2H 2 and C 2H 6 extend up to the 10 -6 bar level, a significantly higher altitude than most previous results in the literature. Further ground-based observations covering other longitudes are needed to test if these mixing ratios are representative values for the equatorial and polar regions.

  16. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J.

    updating

    We investigate Arctic tropospheric composition using ground-based Fourier Transform Infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°5' N, 86°42' W) and at Thule (Greenland, 76°53' N, -68°74' W) from 2008 to 2012. The target species: carbon monoxide (CO), hydrogen cyanide (HCN), ethane (C2H6), acetylene (C2H2), formic acid (HCOOH), and formaldehyde (H2CO) are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C2H6), ten and eight fire events are identified at Eureka and Thule, respectively, within the five-year FTIR timeseries. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS) fire hot spot data, Stochastic Time-Inverted Lagrangian Transport model (STILT) footprints, and Ozone Monitoring Instrument (OMI) UV aerosol index maps are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR datasets are 0.39 ± 0.15 g kg-1 for HCN, 1.23 ± 0.49 g kg-1 for C2H6, 0.34 ± 0.16 g kg-1 for C2H2, 2.13 ± 0.92 g kg-1 for HCOOH, and 3.14 ± 1.28 g kg-1 for CH3OH. To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and their transport. Good agreement in winter

  17. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L. K.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J.

    updating

    We investigate Arctic tropospheric composition using ground-based Fourier transform infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) and at Thule (Greenland, 76°53' N, -68°74' W) from 2008 to 2012. The target species, carbon monoxide (CO), hydrogen cyanide (HCN), ethane (C2H6), acetylene (C2H2), formic acid (HCOOH), and formaldehyde (H2CO) are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C2H6), ten and eight fire events are identified at Eureka and Thule, respectively, within the 5-year FTIR time series. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS) fire hotspot data, Stochastic Time-Inverted Lagrangian Transport (STILT) model footprints, and Ozone Monitoring Instrument (OMI) UV aerosol index maps, are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR data sets are 0.40 ± 0.21 g kg-1 for HCN, 1.24 ± 0.71 g kg-1 for C2H6, 0.34 ± 0.21 g kg-1 for C2H2, and 2.92 ± 1.30 g kg-1 for HCOOH. The emission factor for CH3OH estimated at Eureka is 3.44 ± 1.68 g kg-1. To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for OZone And Related chemical Tracers, version 4 (MOZART-4). Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and

  18. The Composition of Comet C/2009 PI (Garradd) from Infrared Spectroscopy: Evidence for an Oxygen-Rich Heritage?

    NASA Technical Reports Server (NTRS)

    DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Paganini, L.; Mumma, M. J.; Charnley, S. B.; Keane, J. V.; Meech, K. J.; Blake, G. A.; Boehnhardt, H.;

    updating

    Comets retain relatively primitive icy material remaining from the epoch of Solar System for111ation, however the extent to which their ices are modified remains a key question in cometary science. One way to address this is to measure the relative abundances of primary (parent) volatiles in comets (i.e., those ices native to the nucleus). High-resolution (lambda/delta lambda greater than 10(exp 4)) infrared spectroscopy is a powerful tool for measuring parent volatiles in comets through their vibrational emissions in the 3-5 micrometer region. With modern instrumentation on worldclass telescopes, we can quantify a multitude of species (e.g., H2O, C2H2, CH4, C2H6 CO, H2CO, CH3OH, HCN, NH3), even in comets with modest gas production. In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6 and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules and their variability among comets contributes to understanding the synthesis of the more complex prebiotic compounds.

  19. The Composition of Comet C/2009 P1 (Garradd) from Infrared Spectroscopy: Evidence for an Oxygen-Rich Heritage?

    NASA Technical Reports Server (NTRS)

    DiSanti, M. A.; Bonev, B. P.; Villaneueva, G. L.; Paganini, L.; Mumma, M. J.; Charnley, S. B.; Keane, J. V.; Blake, G. A.; Boehnhardt, H.; Lippi, M.

    updating

    Comets retain relatively primitive icy material remaining from the epoch of Solar System formation, however the extent to which their ices are modified remains a key question in cometary science. One way to address this is to measure the relative abundances of primary (parent) volatiles in comets (i.e., those ices native to the nucleus). High-resolution (lambda/delta lambda greater than 10(exp 4)) infrared spectroscopy is a powerful tool for measuring parent volatiles in comets through their vibrational emissions in the approximately 3-5 micrometer region. With modern instrumentation on world-class telescopes, we can quantify a multitude of species (e.g., H2O, C2H2, CH4, C2H6, CO, H2CO, CH3OH, HCN, NH3), even in comets with modest gas production. In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6, and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules and their variability among comets contributes to understanding the synthesis of the more complex prebiotic compounds.

  20. Non-LTE models of Titan's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Yelle, Roger V.

    updating

    Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.

  1. Primary Volatile Abundances in Comets from Infrared Spectroscopy: Implications for Reactions on Grain Surfaces in the Interstellar/Nebular Environment

    NASA Technical Reports Server (NTRS)

    DiSanti, M. A.; Bonev, B. P.; Vilanueva, G. L.; Paganini, L.; Radeva, Y. L.; Mumma, M. J.; Gibb, E.; Magee-Sauer, K.

    updating

    Comets retain relatively primitive icy material remaining from the epoch of Solar System formation, however the extent to which they are modified from their initial state remains a key question in cometary science. High-resolution lR spectroscopy has emerged as a powerful tool for measuring vibrational emissions from primary volatiles (i.e., those contained in the nuclei of comets). With modern instrumentation, most notably NIRSPEC at the Keck II 10-m telescope, we can quantify species of astrobiological importance (e.g., H20, C2H2, CH4, C2H6, CO, H2CO, CH30H, HCN, NH3). In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6 and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules (and their variability among comets) is a feasible task that contributes to understanding their delivery to Earth's early biosphere and to the synthesis of more complex pre biotic compounds. Over 20 comets have now been measured with IR spectroscopy, and this sample reveals significant diversity in primary volatile compositions. From this, a taxonomic classification scheme is emerging, presumably reflecting the diverse conditions experienced by pre-cometary grains in interstellar and subsequent nebular environs. The importance of H-atom addition to C2H2 on the surfaces of interstellar grains to produce C2H6 was validated by the discovery of abundant ethane in comet C/1996 B2 (Hyakutake) with C2H6/CH4 well above that achievable by gas-phase chemistry , and then in irradiation experiments on laboratory ices at 10 - 50 K. The large abundance ratios C2H6/CH4 observed universally in comets establish H-atom addition as an important and likely ubiquitous process, and comparing C2H6/C2H2 among comets can provide information on its efficiency. The IR is uniquely capable since symmetric hydrocarbons (e.g., C2H2, CH4, C2H6) have no electric

  2. Temporal and Spatial Aspects of Gas Release During the 2010 Apparition of Comet 103P/Hartley-2

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Bonev, B. P.; Villanueva, G. L.; Paganini, L.; DiSanti, M. A.; Gibb, E. L.; Keane, J. V.; Meech, K. J.; Blake, G. A.; Ellis, R. S.;

    updating

    We report measurements of eight primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, C2H2, H2CO, and NH3) and two product species (OH and NH2) in comet lO3P/Hartley-2 using high dispersion infrared spectroscopy. We quantified the long- and short-term behavior of volatile release over a three-month interval that encompassed the comet's close approach to Earth, its perihelion passage, and flyby of the comet by the Deep Impact spacecraft during the EPOXI mission. We present production rates for individual species, their mixing ratios relative to water, and their spatial distributions in the coma on multiple dates. The production rates for water, ethane, HCN, and methanol vary in a manner consistent with independent measures of nucleus rotation, but mixing ratios for HCN, C2H6, & CH3OH are independent of rotational phase. Our results demonstrate that the ensemble average composition of gas released from the nucleus is well defined, and relatively constant over the three-month interval (September 18 through December 1,7). If individual vents vary in composition, enough diverse vents must be active simultaneously to approximate (in sum) the bulk composition of the nucleus. The released primary volatiles exhibit diverse spatial properties which favor the presence of separate polar and apolar ice phases in the nucleus, establish dust and gas release from icy clumps, and from the nucleus, and provide insights into the driver for the cyanogen (CN) polar jet. The spatial distributions of C2H6 & HCN along the near-polar jet (UT 19.5 October) and nearly orthogonal to it (UT 22.5 October) are discussed relative to the origin of CN. The ortho-para ratio (OPR) of water was 2.85 +/- 0.20; the lower bound (2.65) defines T(sub spin) > 32 K. These values are consistent with results returned from ISO in 1997 .

  3. En Route to Destruction: the Evolution in Composition of Ices in Comet D 2012 S1 (ISON) Between 1.2 and 0.34 Au from the Sun as Revealed at Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Disanti, M. A.; Bonev, B. P.; Gibb, L. E.; Paganini, L.; Villanueva, G.; Mumma, M. J.; Keane, J. V.; Blake, G. A.; Dello Russo, N.; Meech, K. J.;

    updating

    We report production rates for H2O and eight trace molecules (CO, C2H6, CH4, CH3OH, NH3, H2CO, HCN, C2H2) in the dynamically new, Sun-grazing Comet C2012 S1 (ISON), using high-resolution spectroscopy at Keck II and the NASA IRTF on 10pre-perihelion dates encompassing heliocentric distances Rhupdating AU. Measured water production rates spanned two orders of magnitude, consistent with a long-term heliocentric power law Q(H2O) Rh-3.10.1). Abundance ratios for CO, C2H6, and CH4 with respect to H2O remained constant with Rh and below their corresponding mean values measured among a dominant sample of Oort Cloud comets. CH3OH was also depleted for Rh 0.5 AU, but was closer to its mean value for Rh0.5 AU. The remaining four molecules exhibited higher abundance ratios within 0.5 AU: for Rh 0.8 AU, NH3 and C2H2 were consistent with their mean values while H2CO and HCN were depleted. For Rh 0.5 AU, all four were enriched, with NH3, H2CO, and HCN increasing most. Spatial profiles of gas emission in ISON consistently peaked sunward of the dust continuum, which was asymmetric antisunward and remained singly peaked for all observations. NH3 within 0.5 AU showed a broad spatial distribution, possibly indicating its release in the coma provided that optical depth effects were unimportant. The column abundance ratio NH2H2O at 0.83 AU was close to the typical NHOH from optical wavelengths, but was higher within 0.5 AU. Establishing its production rate and testing its parentage (e.g., NH3) require modeling of coma outflow.

  4. A Multi-Wavelength Study of Parent Volatile Abundances in Comet C/2006 M4 (SWAN)

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael A.; Villanueva, Geronimo L.; Milam, Stefanie N.; Zack, Lindsay N.; Bonev, Boncho P.; Mumma, Michael; Ziurys, Lucy M.; Anderson, William M.

    updating

    Volatile organic emissions were detected post-perihelion in the long period comet C/2006 M4 (SWAN) in October and November 2006. Our study combines target-of-opportunity, observations using the infrared Cryogenic Echelle Spectrometer (CSHELL) at the NASA-IRTF 3-m telescope, and millimeter wavelength observations using the Arizona Radio Observatory (ARO) 12-m telescope. Five parent volatiles were measured with CSHELL (H2O, CO, CH3OH, CH4, and C2H6), and two additional species (HCN and CS) were measured with the ARID 12-m. These revealed highly depleted CO and somewhat enriched CH3OH compared with abundances observed in the dominant group of long-period (Oort cloud) comets in our sample and similar to those observed recently in Comet 8P/Tuttle. This may indicate highly efficient H-atom addition to CO at very low temperature (approx.10-20 K) on the surfaces of interstellar (pre-cometary) grains. Comet C12006 M4 had nearly "normal" C2H6, and CH4, suggesting a processing history similar to that experienced by the dominant group. When compared with estimated water production at the time of the millimeter observations, HCN was slightly depleted compared with the normal abundance in comets based on 1R observations but was consistent with the majority of values from the millimeter. The ratio CS/HCN in C/2006 M4 was within the range measured in ten comets at millimeter wavelengths. The higher apparent H-atom conversion efficiency compared with most comets may indicate that the icy grains incorporated into C/2006 M4 were exposed to higher H-atom densities, or alternatively to similar densities but for a longer period of time.

  5. Biomass Burning Influences on the Composition of the Remote South Pacific Troposphere: Analysis Based on Observations from PEM Tropics-A

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Viezee, W.; Chen, Y.; Bradshaw, J.; Sandholm, S.; Blake, D.; Blake, N.; Heikes, B.; Snow, J.; Talbot, R.;

    updating

    Airborne, in-situ measurements from PEM-Tropics-A (September/October 1996) are analyzed to show the presence of distinct pollution plumes in the middle-tropical troposphere of the remote South Pacific (10-30degS). These elevated plumes cause a relative maximum at about 5-7km attitude in the vertical distribution of primary and secondary species characteristic of fuel combustion and biomass burning (CO, C2H2, C2H6, CH3Cl, PAN, O3). Similar plumes were also observed at mid-latitudes in the middle troposphere during three flights east of New Zealand (40-45degS). In all, pollution plumes with CO larger than 100 ppb were observed 24 times on 7 separate flight days south of the equator. The observed plumes were generally embedded in very dry air. Ten-day back trajectory analysis supports the view that these originated from the biomass burning regions of South Africa (and South America) and were transported to the South Pacific along long-distance subsiding trajectories. The chemical composition of the southern Pacific troposphere analyzed from the PEM-Tropics-A data is compared with data from the tropical regions of the northern Pacific (PEM-West-A) and southern Atlantic (TRACE-A) during the same Sept/Oct time period. Sizable perturbations in the abundance of ozone and its key precursors, resulting from the transport of pollution originating from biomass burning sources, are observed in much of the Southern Hemispheric troposphere.

  6. The influence of instrumental line shape degradation on NDACC gas retrievals: total column and profile

    NASA Astrophysics Data System (ADS)

    Sun, Youwen; Palm, Mathias; Liu, Cheng; Hase, Frank; Griffith, David; Weinzierl, Christine; Petri, Christof; Wang, Wei; Notholt, Justus

    updating

    We simulated instrumental line shape (ILS) degradations with respect to typical types of misalignment, and compared their influence on each NDACC (Network for Detection of Atmospheric Composition Change) gas. The sensitivities of the total column, the root mean square (rms) of the fitting residual, the total random uncertainty, the total systematic uncertainty, the total uncertainty, degrees of freedom for signal (DOFs), and the profile with respect to different levels of ILS degradation for all current standard NDACC gases, i.e. O3, HNO3, HCl, HF, ClONO2, CH4, CO, N2O, C2H6, and HCN, were investigated. The influence of an imperfect ILS on NDACC gases' retrieval was assessed, and the consistency under different meteorological conditions and solar zenith angles (SZAs) were examined. The study concluded that the influence of ILS degradation can be approximated by the linear sum of individual modulation efficiency (ME) amplitude influence and phase error (PE) influence. The PE influence is of secondary importance compared with the ME amplitude. Generally, the stratospheric gases are more sensitive to ILS degradation than the tropospheric gases, and the positive ME influence is larger than the negative ME. For a typical ILS degradation (10 %), the total columns of stratospheric gases O3, HNO3, HCl, HF, and ClONO2 changed by 1.9, 0.7, 4, 3, and 23 %, respectively, while the columns of tropospheric gases CH4, CO, N2O, C2H6, and HCN changed by 0.04, 2.1, 0.2, 1.1, and 0.75 %, respectively. In order to suppress the fractional difference in the total column for ClONO2 and other NDACC gases within 10 and 1 %, respectively, the maximum positive ME degradations for O3, HNO3, HCl, HF, ClONO2, CO, C2H6, and HCN should be less than 6, 15, 5, 5, 5, 5, 9, and 13 %, respectively; the maximum negative ME degradations for O3, HCl, and HF should be less than 6, 12, and 12 %, respectively; the influence of ILS degradation on CH4 and N2O can be regarded as being negligible.

  7. Chloromethane formation and degradation in the fern phyllosphere.

    PubMed

    Jaeger, Nicole; Besaury, Ludovic; Röhling, Amelie Ninja; Koch, Fabien; Delort, Anne-Marie; Gasc, Cyrielle; Greule, Markus; Kolb, Steffen; Nadalig, Thierry; Peyret, Pierre; Vuilleumier, Stéphane; Amato, Pierre; Bringel, Françoise; Keppler, Frank

    updating

    Chloromethane (CH 3 Cl) is the most abundant halogenated trace gas in the atmosphere. It plays an important role in natural stratospheric ozone destruction. Current estimates of the global CH 3 Cl budget are approximate. The strength of the CH 3 Cl global sink by microbial degradation in soils and plants is under discussion. Some plants, particularly ferns, have been identified as substantial emitters of CH 3 Cl. Their ability to degrade CH 3 Cl remains uncertain. In this study, we investigated the potential of leaves from 3 abundant ferns (Osmunda regalis, Cyathea cooperi, Dryopteris filix-mas) to produce and degrade CH 3 Cl by measuring their production and consumption rates and their stable carbon and hydrogen isotope signatures. Investigated ferns are able to degrade CH 3 Cl at rates from 2.1 to 17 and 0.3 to 0.9μgg dw -1 day - 1 for C. cooperi and D. filix-mas respectively, depending on CH 3 Cl supplementation and temperature. The stable carbon isotope enrichment factor of remaining CH 3 Cl was -39±13‰, whereas negligible isotope fractionation was observed for hydrogen (-8±19‰). In contrast, O. regalis did not consume CH 3 Cl, but produced it at rates ranging from 0.6 to 128μgg dw -1 day - 1 , with stable isotope values of -97±8‰ for carbon and -202±10‰ for hydrogen, respectively. Even though the 3 ferns showed clearly different formation and consumption patterns, their leaf-associated bacterial diversity was not notably different. Moreover, we did not detect genes associated with the only known chloromethane utilization pathway "cmu" in the microbial phyllosphere of the investigated ferns. Our study suggests that still unknown CH 3 Cl biodegradation processes on plants play an important role in global cycling of atmospheric CH 3 Cl. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. TOTAL PRECIPITATION DATA - U.S HISTORICAL CLIMATOLOGY NETWORK (HCN )

    EPA Science Inventory

    The Carbon Dioxide Information Analysis Center, which includes the World Data Center-A for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, ...

  9. Electron Irradiation of Kuiper Belt Surface Ices: Ternary N2-CH4-CO Mixtures as a Case Study

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Kaiser, R. I.

    updating

    The space weathering of icy Kuiper Belt Objects was investigated in this case study by exposing methane (CH4) and carbon monoxide (CO) doped nitrogen (N2) ices at 10 K to ionizing radiation in the form of energetic electrons. Online and in situ Fourier transform infrared spectroscopy was utilized to monitor the radiation-induced chemical processing of these ices. Along with isocyanic acid (HNCO), the products could be mainly derived from those formed in irradiated binary ices of the N2-CH4 and CO-CH4 systems: nitrogen-bearing products were found in the form of hydrogen cyanide (HCN), hydrogen isocyanide (HNC), diazomethane (CH2N2), and its radical fragment (HCN2); oxygen-bearing products were of acetaldehyde (CH3CHO), formyl radical (HCO), and formaldehyde (H2CO). As in the pure ices, the methyl radical (CH3) and ethane (C2H6) were also detected, as were carbon dioxide (CO2) and the azide radical (N3). Based on the temporal evolution of the newly formed products, kinetic reaction schemes were then developed to fit the temporal profiles of the newly formed species, resulting in numerical sets of rate constants. The current study highlights important constraints on the preferential formation of isocyanic acid (HNCO) over hydrogen cyanide (HCN) and hydrogen isocyanide (HNC), thus guiding the astrobiological and chemical evolution of those distant bodies.

  10. Molecular Detectability in Exoplanetary Emission Spectra

    NASA Astrophysics Data System (ADS)

    Tessenyi, M.; Tinetti, G.; Savini, G.; Pascale, E.

    updating

    Of the many recently discovered worlds orbiting distant stars, very little is yet known of their chemical composition. With the arrival of new transit spectroscopy and direct imaging facilities, the question of molecular detectability as a function of signal-to-noise (SNR), spectral resolving power and type of planets has become critical. We study the detectability of key molecules in the atmospheres of a range of planet types, and report on the minimum detectable abundances at fixed spectral resolving power and SNR. The planet types considered — hot Jupiters, hot super-Earths, warm Neptunes, temperate Jupiters and temperate super-Earths — cover most of the exoplanets characterisable today or in the near future. We focus on key atmospheric molecules, such as CH4, CO, CO2, NH3, H2O, C2H2, C2H6, HCN, H2S and PH.

  11. Correlation of molecular valence- and K-shell photoionization resonances with bond lengths

    NASA Technical Reports Server (NTRS)

    Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.

    updating

    The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.

  12. Parent volatiles in comet 9P/Tempel 1: before and after impact

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; DiSanti, Michael A.; Magee-Sauer, Karen; Bonev, Boncho P.; Villanueva, Geronimo L.; Kawakita, Hideyo; Dello Russo, Neil; Gibb, Erika L.; Blake, Geoffrey A.; Lyke, James E.;

    updating

    We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The abundance ratios in the ejecta are similar to those for most Oort cloud comets, but methanol and acetylene are lower in Tempel 1 by a factor of about 2. These results suggest that the volatile ices in Tempel 1 and in most Oort cloud comets originated in a common region of the protoplanetary disk.

  13. Constraining the Volatile Composition and Coma Photochemistry in Jupiter Family Comet 41P/Tuttle-Giacobini-Kresak with High Resolution IR and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    McKay, Adam; DiSanti, Michael A.; Cochran, Anita L.; Dello Russo, Neil; Bonev, Boncho P.; Vervack, Ronald J.; Gibb, Erika L.; Roth, Nathan X.; Kawakita, Hideyo

    updating

    Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC's) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.

  14. Constraining the Volatile Composition and Coma Photochemistry in Jupiter Family Comet 41P/Tuttle-Giacobini-Kresak with High Resolution IR and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    McKay, Adam; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Bonev, Boncho; Vervack, Ronald; Gibb, Erika; Roth, Nathan; Kawakita, Hideyo

    updating

    Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC'S) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.

  15. Detection of the long-range transport of wildfire pollution to the Arctic using a network of ground-based FTIR spectrometers, satellite observations and model result

    NASA Astrophysics Data System (ADS)

    Lutsch, E.; Conway, S. A.; Strong, K.; Jones, D. B. A.; Drummond, J. R.; Ortega, I.; Hannigan, J. W.; Makarova, M.; Notholt, J.; Blumenstock, T.; Sussmann, R.; Mahieu, E.; Kasai, Y.; Clerbaux, C.

    updating

    We present a multi-year time series of the total columns of carbon monoxide (CO), hydrogen cyanide (HCN) and ethane (C2H6) obtained by Fourier Transform Infrared (FTIR) spectrometer measurements at nine sites. Six are high-latitude sites: Eureka, Nunavut; Ny Alesund, Norway; Thule, Greenland; Kiruna, Sweden; Poker Flat, Alaska and St. Petersburg, Russia and three are mid-latitude sites; Zugspitze, Germany; Jungfraujoch, Switzerland and Toronto, Ontario. For each site, the inter-annual trends and seasonal variabilities of the CO total column time series are accounted for, allowing ambient concentrations to be determined. Enhancements above ambient levels are then used to identify possible wildfire pollution events. Since the abundance of each trace gas species emitted in a wildfire event is specific to the type of vegetation burned and the burning phase, correlations of CO to the other long-lived wildfire tracers HCN and C2H6 allow for further confirmation of the detection of wildfire pollution. Back-trajectories from HYSPLIT and FLEXPART as well as fire detections from the Moderate Resolution Spectroradiometer (MODIS) allow the source regions of the detected enhancements to be determined while satellite observations of CO from the Measurement of Pollution in the Troposphere (MOPITT) and Infrared Atmospheric Sounding Interferometer (IASI) instruments can be used to track the transport of the smoke plume. Differences in travel times between sites allows ageing of biomass burning plumes to be determined, providing a means to infer the physical and chemical processes affecting the loss of each species during transport. Comparisons of ground-based FTIR measurements to GEOS-Chem chemical transport model results are used to investigate these processes, evaluate wildfire emission inventories and infer the influence of wildfire emissions on the Arctic.

  16. Gemini NorthNIRI Spectra of Pluto and Charon: Simultaneous Analysis of the Surface and Atmosphere

    NASA Technical Reports Server (NTRS)

    Cook, Jason C.; Cruikshank, Dale P.; Young, Leslie A.

    updating

    94035We report on our analysis of blended Pluto and Charon spectra over the wavelength range 1.4 to 2.5 m as obtained by the NIRI instrument on Gemini North on June 25-28, 2004. The data have a resolving power () around 1500 and a SNR around 200 per pixel. The observed blended spectra are compared to models that combine absorption from the solid ice on the surface using Hapke theory, and absorption from the gaseous atmosphere. We assume the spectrum is a combination of several spatially separate spectral units: a CH4-rich ice unit, a volatile unit (an intimate mixture of N2, CH4 and CO), and a Charon unit (H2O, ammonia hydrate and kaolinite). We test for the presence of hydrocarbons (i.e. C2H6) and nitriles (i.e. HCN) and examine cases where additional ices are present as either pure separate spatial units, mixed with the CH4-rich unit or part of the volatile unit. We conclude that 2-4 of Plutos surface is covered with pure-C2H6 and our identification of C2H6 is significantly strengthened when absorption due to gaseous CH4 is included. The inclusion of Plutos atmosphere demonstrates that low-resolution, high-SNR observations are capable of detecting Plutos atmosphere during a time when Plutos atmosphere may have been undergoing rapid changes (updating) and no high-resolution spectra were obtained. In particular, we identify features at 1.665 and 2.317 m as the Q-branch of the 23 and 3+4 bands of gaseous CH4, respectively. The later band is also evident in many previously published spectra of Pluto. Our analysis finds it is unnecessary to include 13CO to explain the depth of the 2.405 m, which has been previously suggested to be a spectral blended with C2H6, but we cannot definitively rule out its presence. Funding for this work (Cook) has been provided by a NASA-PATM grant.

  17. Microwave limb sounding of the UT/LS: Stratosphere-Troposphere Exchange And Climate Monitor (STEAM) and related projects

    NASA Astrophysics Data System (ADS)

    Urban, Joachim

    The Stratosphere-Troposphere Exchange And climate Monitor (STEAM) radiometer is designed to provide vertically and horizontally well resolved profiles of key species in the climate relevant upper troposphere and lower stratosphere (UT/LS) altitude region such as H2O, O3, CO, HCN, CH3CN, CH3Cl, N2O, HNO3, and temperature. The instrument is a multi-beam limb sounder employing 12GHz wide sub-harmonically pumped double sideband mixers targeting the 324-336GHz (lower sideband) and updatingGHz (upper sideband) spectral bands with a local oscillator set at 339.625GHz. Whilst the instrument configuration had been optimized during the recent years to fit the ESA Earth Explorer 7 candidate mission PREMIER, the instrument payload is now being studied in a smaller configuration for a different satellite mission in collaboration with international partners. The presentation provides an overview of the STEAM project and its science objectives and focuses on a description of the measurement capabilities of the newly configured STEAM radiometer, in comparison to related projects and existing sensors such as Odin/SMR and Aura/MLS.

  18. The Compositional Evolution of C/2012 S1 (ISON) from Ground-Based High-Resolution Infrared Spectroscopy as Part of a Worldwide Observing Campaign

    NASA Technical Reports Server (NTRS)

    Russo, N. Dello; Vervack, R. J., Jr.; Kawakita, H.; Cochran, A.; McKay, A. J.; Harris, W. M.; Weaver, H.A.; Lisse, C. M.; DiSanti, M. A.; Kobayashi, H.

    updating

    Volatile production rates, relative abundances, rotational temperatures, and spatial distributions in the coma were measured in C/2012 S1 (ISON) using long-slit high-dispersion (lambda/delta lambda approximately 2.5 times 10 (sup 4)) infrared spectroscopy as part of a worldwide observing campaign. Spectra were obtained on Universal Time 2013 October 26 and 28 with NIRSPEC (Near Infrared Spectrometer) at the W.M. Keck Observatory, and Universal Time 2013 November 19 and 20 with CSHELL (Cryogenic Echelle Spectrograph) at the NASA IRTF (Infrared Telescope Facility). H2O was detected on all dates, with production rates increasing markedly from (8.7 plus or minus 1.5) times 10 (sup 27) molecules per second on October 26 (Heliocentric Distance = 1.12 Astronomical Units) to (3.7 plus or minus 0.4) times 10 (sup 29) molecules per second on November 20 (Heliocentric Distance = 0.43 Astronomical Units). Short-term variability of H2O production is also seen as observations on November 19 show an increase in H2O production rate of nearly a factor of two over a period of about 6 hours. C2H6, CH3OH and CH4 abundances in ISON (International Scientific Optical Network) are slightly depleted relative to H2O when compared to mean values for comets measured at infrared wavelengths. On the November dates, C2H2, HCN and OCS abundances relative to H2O appear to be within the range of mean values, whereas H2CO and NH3 were significantly enhanced. There is evidence that the abundances with respect to H2O increased for some species but not others between October 28 (Heliocentric Distance = 1.07 Astronomical Units) and November 19 (Heliocentric Distance = 0.46 Astronomical Units). The high mixing ratios of H2CO to CH3OH and C2H2 to C2H6 on November 19, and changes in the mixing ratios of some species with respect to H2O between October 28 to November 19, indicates compositional changes that may be the result of a transition from sampling radiation-processed outer layers in this dynamically

  19. Methyl Chloride Emission from Tropical Plants

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ikeda, M.; Ikeda, M.; Inuzuka, Y.; Yukawa, T.

    updating

    We studied CH3Cl emissions from tropical plants in Tropical Rainforest Glasshouse (25 m x 20 m x 10-24 m high) in Tsukuba Botanical Gardens, where more than 200 representative species from lowland tropical forests of Southeast Asia grow. CH3Cl concentrations were always higher in the glasshouse than outside and increased significantly when the windows were closed. The fluxes of CH3Cl from the tropical rainforest system in the glasshouse were calculated from the averages of their accumulation rates when the windows were closed (average; 142 pptv”h-1) with the dimension of the glasshouse. Emission rates per unit area for CH3Cl was 5.4 mg m-2 h-1. In order to determine which of the plants or whether the soil is responsible for the increase of CH3Cl, flux measurements were done by using an enclosure method. The soil was found to take up CH3Cl at a small rate. On the other hand, some plants from the Marattiaceae, Cyatheaceae (tree fern), Dicksoniaceae, and Dipterocarpaceae families were found to significantly emit CH3Cl. The first three families are ferns commonly growing in tropical forests, and Dipterocarpaceae species are dominant in the tropical rainforests of Southeast Asia. The average CH3Cl emission rate from the 9 plants in these families was around 0.5 mg (g dry leaf)-1”h-1. As for Cyatheaceae, we conducted a flux measurement from Cyathea lepifera E.Copel. in a subtropical forest in Okinawa and detected high emissions of CH3Cl amounting to 1.1 mg (g dry leaf)-1”h-1. Strong emissions of CH3Cl from tropical forests raises questions about the trends of chlorine compounds in the future and in the past.

  20. Atmos/Atlas 3 Infrared Profile Measurements of Trace Gases in The November 1994 Tropical and Subtropical Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Gunson, M. R.; Wang, P.-H.; Arduini, R. F.; Baum, B. A.; Minnis, P.; Minnis, P.; Goldman, A.; Abrams, M. C.; Zander, R.;

    updating

    Vertical mixing ratio profiles of four relatively long-lives gases, HCN, C2H2, CO, and C2H6, have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded between latitudes of 5.3degN and 31.4degN. The observations were obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 3 shuttle flight, 3-12 November 1994. Elevated mixing ratios below the tropopause were measured for these gases during several of the occultations. The positive correlations obtained between the simultaneously measured mixing ratios suggest that the enhancements are likely the result of surface emissions, most likely biomass burning and/or urban industrial activities, followed by common injection via deep convective transport of the gases to the upper troposphere. The elevated levels of HCN may account for at least part of the "missing NO," in the upper troposphere. Comparisons of the observations with values measured during a recent aircraft campaign are presented.

  1. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    updating

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  2. High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    NASA Technical Reports Server (NTRS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    updating

    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  3. Photochemistry of Pluto's atmosphere and ionosphere near perihelion

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.; Cruikshank, Dale P.

    updating

    We consider Pluto's photochemistry using a background model for a hydrodynamically escaping atmosphere by Krasnopolsky [1999]. Some adjustments are made in the basic continuity equation and in the boundary conditions to account for hydrodynamic flow in the atmosphere. We model the photochemistry for 44 neutral and 23 ion species. Because of the high methane mixing ratio, Pluto's photochemistry is more similar to that of Titan than that of Triton. Charge exchange between N2+ and CH4 significantly reduces the production of atomic nitrogen. The most abundant photochemical products are C2H2(3×1017), C4H2(1017), HCN(6×1016), H2(4×1016), C2H4(4×1016), HC3N(3.4×1016), C2H6(2×1016), C3H2(9×1015), and C3H4 (8×1015, all in cm-2). In addition to the parent N2, CH4, and CO molecules which absorb photons with λHCN, C2H6, and C2H4 (65, 58, 23, 14, 9, and 6 g cm-2 Byr-1, respectively, reduced by a factor of 3 to account for seasonal variations). Escape of photochemical products is highest for H2, H, C2H2, C2H4, HCN, and N(2×1026, 1.4×1026, 6×1024, 3.6×1024, 2.3×1024, and 1.8×1024s-1, respectively). The electron density reaches a maximum of 800 cm-3 at 2250 km. The most abundant ions are HCNH+, C3H3+, and C3H5+. Some of the photochemical products might be detected using the technique of UV solar occultation spectroscopy from a spacecraft flyby.

  4. Retrievals of ethane from ground-based high-resolution FTIR solar observations with updated line parameters: determination of the optimum strategy for the Jungfraujoch station.

    NASA Astrophysics Data System (ADS)

    Bader, W.; Perrin, A.; Jacquemart, D.; Sudo, K.; Yashiro, H.; Gauss, M.; Demoulin, P.; Servais, C.; Mahieu, E.

    updating

    of methyl chloride (CH3Cl) in the 3.4 μm region (Bray et al., 2011) will be quantified. The ethane a priori volume mixing ratio (VMR) profile and associated covariance are based on synthetic data from the chemical transport model (CTM) of the University of Oslo. In this contribution, we will present updated ethane total and tropospheric column retrievals, using the SFIT-2 algorithm (v3.91) and high-resolution Fourier Transform Infrared (FTIR) solar absorption observations recorded with a Bruker 120HR instrument, at the high altitude research station of the Jungfraujoch (46.5° N, 8° E, 3580 m asl), within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, visit http://www.ndacc.org). We will characterize three microwindows encompassing the strongest ethane features after careful selection of a priori VMR profiles, spectroscopic parameters, accounting at best for all interfering species. We will then present the retrieval strategy representative of the best combination of those three characterized micro-windows in order to minimize the fitting residuals while maximizing the information content, the precision and the reliability of the retrieved product. The long-term C2H6 column time series will be produced using the Jungfraujoch observational database. Comparisons with synthetic data produced by two chemical transport model (CHASER and the one of the University of Oslo) will also be presented and analyzed, aiming at the determination and interpretation of long-term trends and interannual variations of ethane at Northern mid-latitudes. Acknowledgments The University of Liège involvement has primarily been supported by the PRODEX program funded by the Belgian Federal Science Policy Office, Brussels and by the Swiss GAW-CH program. E. Mahieu is Research Associate with the F.R.S. - FNRS. The FRS-FNRS and the Fédération Wallonie-Bruxelles are further acknowledged for observational activities support. We thank the International

  5. Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl

    NASA Astrophysics Data System (ADS)

    Keppler, Frank; Bahlmann, Enno; Greule, Markus; Schöler, Heinz Friedrich; Wittmer, Julian; Zetzsch, Cornelius

    updating

    Chloromethane (CH3Cl) is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be -264±45 and -280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4) as the target compound with OH and obtained a fractionation constant of -205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.

  6. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings

    PubMed Central

    Keppler, Frank; Harper, David B.; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F.; Hamilton, John T. G.

    updating

    Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150–400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ2H +800 to +1100‰, δ13C −19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ2H +1054 ± 626‰, δ13C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources. PMID:updating

  7. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings

    NASA Astrophysics Data System (ADS)

    Keppler, Frank; Harper, David B.; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F.; Hamilton, John T. G.

    updating

    Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150-400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ2H +800 to +1100‰, δ13C -19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ2H +1054 +/- 626‰, δ13C +43.2 +/- 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.

  8. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings.

    PubMed

    Keppler, Frank; Harper, David B; Greule, Markus; Ott, Ulrich; Sattler, Tobias; Schöler, Heinz F; Hamilton, John T G

    updating

    Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150-400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ(2)H +800 to +1100‰, δ(13)C -19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ(2)H +1054 ± 626‰, δ(13)C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.

  9. Variability of Atmospheric CO2 over the western North Pacific: Influence of Asian outflow during March-April 2001

    NASA Astrophysics Data System (ADS)

    Vay, S. A.; Woo, J.; Anderson, B. E.; Thornhill, K. L.; Kiley, C.; Avery, M. A.; Sachse, G. W.; Blake, D. R.; Streets, D. G.; Nolf, S. R.

    updating

    We report here tropospheric CO2 measurements made as part of the airborne component of NASA's Transport and Chemical Evolution over the Pacific (TRACE-P) Mission during March and April in 2001. CO2 mixing ratios, sampled in the subtropics (updating° N) west of 150° E, exhibited a decreasing trend with height (0.5-12 km), were highly correlated with latitude showing a distinct north to south gradient, and peaked between 35-40° N within the planetary boundary layer. Near the Asian continent, discrete plumes encountered below 4 km contained up to 393.6 ppmv CO2 and were augmented with the combustion and industrial tracers CO, C2H6, C3H8, CH3Cl, C2Cl4, and C6H6. A chemically based air mass classification scheme using the combustion products CO and C2H2 as tracers of continental source emissions was employed in this analysis. Results show an excellent positive correlation for CO2 (r2=0.98) with respect to this ratio in the lower to mid free troposphere (4-8 km) providing evidence of continental outflow. South of the Tropic of Cancer, mean and median CO2 values derived from samples obtained below 8 km are less than those calculated for the subtropics. However, within the upper troposphere (UT) of both regions, similar values were determined and enhancements in combustion-derived species in the 8-12 km altitude range were observed. The relationship revealed between CO2 and the C2H2/CO ratio, particularly for the tropics, suggests recent inputs from the surface to the UT. In order to elucidate the processes determining the variations of CO2 in the Asian Pacific rim region during TRACE-P, a CO2 emissions data base developed for Asia was examined in conjunction with the chemistry and 5 day backward trajectories in an attempt to link CO2 enhancements observed in pollution plumes to source regions. From these data acquired downwind of the Asian continent when CO2 concentrations at the surface were approaching their seasonal maximum, we estimate a net export flux on the

  10. Elevated mixing ratios and sources of methyl chloride: Results from a survey in the Yangtze River Delta region of China

    NASA Astrophysics Data System (ADS)

    Song, Ping; Chan, Chuen-Yu; Geng, Fuhai; Yu, Qiong; Guo, Yifei; Yu, Lingwei

    updating

    Measurements of air samples collected at four urban sites in Shanghai, Taizhou, Liyang and Lin'an and a rural site in Chongming Island of the Yangtze River Delta (YRD) region of China revealed noticeably elevated mixing ratios of methyl chloride (CH3Cl). Median CH3Cl mixing ratios reached 0.9-3.9 ppbv at the five sampling locations, significantly higher than most of those reported for other regions in the world. Especially at Liyang site and Taizhou site, CH3Cl exhibited quite high levels with mixing ratios ranging from 0.9 up to 25.9 ppbv (n = 28) and 0.7 up to 17.3 ppbv (n = 29), respectively. With good correlation with methylene chloride (CH2Cl2) and ethylene dichloride (EDC), abundant CH3Cl in urban Shanghai, was mainly associated with industrial activities, although biomass burnings exist widely in rural areas of east China. The high concentrations and large variation of CH3Cl and EDC simultaneously appeared at Liyang site. Spikes of CH3Cl and EDC concentrations as well as toluene/benzene (T/B) ratios frequently present in easterly airflows indicated an important contribution from emissions of chemical plants clustering in the east of Liyang. Different emission sources may contribute to ambient CH3Cl at Taizhou site, which was suggested by the two kinds of linear regressions of CH3Cl to some other compounds detected. The substantially elevated CH3Cl levels suggest significant influence of intensive industrial activities on the YRD atmosphere.

  11. Development of Primary Volatile Production in COMET C/20O9 Pl (GARRADD) During its 2011-2O12 Apparition

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; {agamomo. :/; Vo; DiSanti, M. A.; Bonev, B. P.; Lippi, M.; Boehnhardt, H.; Keane, J. V.; Meech, K. J.; Blake, G. A.

    updating

    We quantified primary volatiles in comet C/2009 Pl (Garradd) through pre- and post-perihelion observations acquired during its apparition in 2011-12 [1,2,3]. Detected volatiles include H2O, CO, CH4, C2H2, C2H6, HCN, NH3, H2CO, and CH3OH. We present production rates and chemical abundance ratios (relative to water) for all species, and I-D spatial profiles for multiple primary volatiles. We discuss these findings in the context of an emerging taxonomy based on primary volatiles in comets [4]. We used three spectrometer/telescope combinations. On UT 20ll August 7 (Rh 2.4 AU) and September 17-21 (Rh 2.0 AU), we used CRIRES at ESO's Very Large Telescope (VLT) [1]. On September 8 and 9 (Rh 2.1 AU), we used NIRSPEC at Keck-2 and CSHELL at IRTF [2]. Using NIRSPEC on October 13 and 2012 January 08 (Rh 1.83 and 1.57 AU, respectively), we detected nine primary volatiles pre-perihelion, and six post-perihelion [3]. CO was enriched in Garradd while C2H2 was strongly depleted. C2H6 and CH3OH displayed abundances close to those measured for the majority of Oort cloud comets observed to date. The high fractional abundance of CO identifies comet C12009 P1 as a CO-rich comet. Spatial profiles revealed notable differences among individual primary species. Given the relatively large heliocentric distance of C/2009 Pl, we explored the effect of water not being fully sublimated within our field of view and we identi$, the "missing" water fraction needed to reconcile the retrieved abundance ratios with the mean values found for "organics-normal" comets.

  12. The role of NH3 and hydrocarbon mixtures in GaN pseudo-halide CVD: a quantum chemical study.

    PubMed

    Gadzhiev, Oleg B; Sennikov, Peter G; Petrov, Alexander I; Kachel, Krzysztof; Golka, Sebastian; Gogova, Daniela; Siche, Dietmar

    updating

    [external_link offset=2]

    The prospects of a control for a novel gallium nitride pseudo-halide vapor phase epitaxy (PHVPE) with HCN were thoroughly analyzed for hydrocarbons-NH3-Ga gas phase on the basis of quantum chemical investigation with DFT (B3LYP, B3LYP with D3 empirical correction on dispersion interaction) and ab-initio (CASSCF, coupled clusters, and multireference configuration interaction including MRCI+Q) methods. The computational screening of reactions for different hydrocarbons (CH4, C2H6, C3H8, C2H4, and C2H2) as readily available carbon precursors for HCN formation, potential chemical transport agents, and for controlled carbon doping of deposited GaN was carried out with the B3LYP method in conjunction with basis sets up to aug-cc-pVTZ. The gas phase intermediates for the reactions in the Ga-hydrocarbon systems were predicted at different theory levels. The located π-complexes Ga…C2H2 and Ga…C2H4 were studied to determine a probable catalytic activity in reactions with NH3. A limited influence of the carbon-containing atmosphere was exhibited for the carbon doping of GaN crystal in the conventional GaN chemical vapor deposition (CVD) process with hydrocarbons injected in the gas phase. Our results provide a basis for experimental studies of GaN crystal growth with C2H4 and C2H2 as auxiliary carbon reagents for the Ga-NH3 and Ga-C-NH3 CVD systems and prerequisites for reactor design to enhance and control the PHVPE process through the HCN synthesis.

  13. Shock Synthesis in the Atmosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Sagan, C.; McDonald, G. D.; de Vanssay, E.; Borucki, W. J.; McKay, C. P.; Bernstein, M. P.; Hartman, T. G.; Lech, J.

    updating

    We have previously investigated an approximate simulation of the Jupiter troposphere at the 1 bar NH_3 cloud level using Laser Induced Plasma (LIP) for shock synthesis in a 84.62:13.3:1.07:1.01 H_2:He:CH_4:NH_3 gas mixture, and found by GC/MS that HCN is the most abundant product, more abundant than all the major product hydrocarbons (C_2H_6, C_2H_2, C_3H_8, and C_4H10) combined. Using purge and trap isolation techniques on the LIP gas mixture using two absorbent traps in tandem, thermal desorption GC/MS has revealed a large array of product molecules starting from simple hydrocarbons such as C_2H_2, C_2H_4, etc., simple nitriles such as HCN, CH_3CN, etc., to molecules up to C13 (e.g. C13H23N). Here we report the results of our more accurate simulation of Jupiter at the 5 bar level using LIP with a 88:11.7:0.2:0.1 H_2:He:CH_4:NH_3 mixture, for comparison with mass spectral data from the Galileo probe. We detect in this more acurate simulation of Jupiter many of the same compounds, such as HCN, dimethylaminoacetonitrile, and dimethylcyanamide, as in the previous lower dilution experiment. We will compare the present results with those from low-pressure continuous flow plasma discharge experiments (McDonald et al. 1992, al Icarus 99, 131). We will also discuss the relevance of our data in light of the significant discrepancies between standard models of the jovian atmosphere and the compositional data returned by the Galileo entry probe.

  14. Diagnostic studies of H2 Ar N2 microwave plasmas containing methane or methanol using tunable infrared diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hempel, F.; Davies, P. B.; Loffhagen, D.; Mechold, L.; Röpcke, J.

    updating

    Tunable infrared diode laser absorption spectroscopy has been used to detect the methyl radical and nine stable molecules, CH4, CH3OH, C2H2, C2H4, C2H6, NH3, HCN, CH2O and C2N2, in H2-Ar-N2 microwave plasmas containing up to 7% of methane or methanol, under both flowing and static conditions. The degree of dissociation of the hydrocarbon precursor molecules varied between 20% and 97%. The methyl radical concentration was found to be in the range updating molecules cm-3. By analysing the temporal development of the molecular concentrations under static conditions it was found that HCN and NH3 are the final products of plasma chemical conversion. The fragmentation rates of methane and methanol (RF(CH4) = (2-7) × 1015 molecules J-1, RF(CH3OH) = (6-9) × 1015 molecules J-1) and the respective conversion rates to methane, hydrogen cyanide and ammonia (RCmax(CH4) = 1.2 × 1015 molecules J-1, RCmax(HCN) = 1.3 × 1015 molecules J-1, RCmax(NH3) = 1 × 1014 molecules J-1) have been determined for different hydrogen to nitrogen concentration ratios. An extensive model of the chemical reactions involved in the H2-N2-Ar-CH4 plasma has been developed. Model calculations were performed by including 22 species, 145 chemical reactions and appropriate electron impact dissociation rate coefficients. The results of the model calculations showed satisfactory agreement between calculated and measured concentrations. The most likely main chemical pathways involved in these plasmas are discussed and an appropriate reaction scheme is proposed.

  15. The Unexpectedly Bright Comet C-2012 F6 (Lemmon) Unveiled at Near-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Paganini, Lucas; Disanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; Keane, Jacqueline V.; Gibb, Erika L.; Boehnhardt, Hermann; Meech, Karen J.

    updating

    We acquired near-infrared spectra of the Oort cloud comet C/2012 F6 (Lemmon) at three different heliocentric distances (R h) during the comet's 2013 perihelion passage, providing a comprehensive measure of the outgassing behavior of parent volatiles and cosmogonic indicators. Our observations were performed pre-perihelion at R h = 1.2 AU with CRIRES (on 2013 February 2 and 4), and post-perihelion at R h = 0.75 AU with CSHELL (on March 31 and April 1) and R h = 1.74 AU with NIRSPEC (on June 20). We detected 10 volatile species (H2O, OH* prompt emission, C2H6, CH3OH, H2CO, HCN, CO, CH4, NH3, and NH2), and obtained upper limits for two others (C2H2 and HDO). One-dimensional spatial profiles displayed different distributions for some volatiles, confirming either the existence of polar and apolar ices, or of chemically distinct active vents in the nucleus. The ortho-para ratio for water was 3.31 +/- 0.33 (weighted mean of CRIRES and NIRSPEC results), implying a spin temperature >37 K at the 95% confidence limit. Our (3s) upper limit for HDO corresponds to D/H C2H6 and CH3OH, while HCN, CH4, and CO displayed abundances close to their median values found among comets. H2CO was the only volatile showing a relative enhancement. The relative paucity of C2H6 and CH3OH (with respect to H2O) suggests formation within warm regions of the nebula. However, the normal abundance of HCN and hypervolatiles CH4 and CO, and the enhancement of H2CO, may

  16. The Chemical Composition of Comet C/2012 S1 (ISON) between 1.2 and 0.35 AU of the Sun

    NASA Astrophysics Data System (ADS)

    DiSanti, Michael A.; Bonev, Boncho P.; Gibb, Erika L.; Villanueva, Geronimo L.; Paganini, Lucas; Mumma, Michael J.; Keane, Jacqueline V.; Meech, Karen J.; Blake, Geoff A.; McKay, Adam J.

    updating

    The apparition of dynamically new, sun-grazing C/2012 S1 (ISON) [1] generated considerable ground- and space-based interest, and provided the rare opportunity to conduct compositional studies to heliocentric distances (Rh) well within 1 AU. We report gas production rates and molecular abundances from high-resolution (λ/Δλ ~ 25,000) spectra on four dates (UT 2013 Oct 22, 24, 25, and Nov 7) using NIRSPEC [2] at Keck 2, and on six dates (Nov 15 through 19, and Nov 22) using CSHELL [3] at the NASA-IRTF. This permitted measuring volatile abundances over a wide range in Rh.NIRSPEC is cross-dispersed and so allows simultaneous measure of trace species together with H2O, thereby avoiding most sources of systematic uncertainty, for example those associated with differences in slit losses and flux calibration among echelle orders. CSHELL has limited spectral coverage per setting, however the IRTF is unique among ground-based IR observatories in allowing daytime observations. This permitted compositional measurements of ISON to a minimum solar elongation angle of 20 degrees.A suite of molecules (H2O, CO, H2CO, CH3OH, C2H6, C2H2, CH4, HCN, NH3) and radicals (OH, NH2) were targeted and detected. Our serial measurements allowed a search for potential changes in molecular abundances relative to H2O. Those of some species (CO, C2H6, CH3OH, CH4) remained relatively constant with Rh, while others (e.g., H2CO, HCN) increased in abundance with decreasing Rh, for example as could result from potential compositional heterogeneity in the nucleus and/or release from increasingly heated grains in the coma. Results from our serial measurements of ISON will be presented and discussed.References: [1] Nevski V. and Novichonok A. (2012) CBET 3238. [2] McLean, I. S., et al. (1998) Proc. SPIE 3354, 566-578. [3] Tokunaga A, et al. (1990) Proc. SPIE, 1235, 131-143. This work is supported through the NASA Planetary Astronomy, Planetary Atmospheres, and Astrobiology Programs, and the National

  17. The chemical composition of comet C/2012 S1 (ISON) between 1.2 au and 0.35 au from the Sun

    NASA Astrophysics Data System (ADS)

    DiSanti, M.; Bonev, B.; Gibb, E.; Villanueva, G.; Paganini, L.; Mumma, M.; Keane, J.; Meech, K.; Blake, G.; McKay, A.

    updating

    Introduction: By virtue of their small size and prolonged storage at large heliocentric distances (R_h), comets remain largely preserved. As a result, their ices encode a record of physical and chemical conditions in the early Solar System [1,2]. The recent apparition of C/2012 S1 (ISON) [3], a dynamically new sun-grazing comet, provided a rare opportunity to both prepare for and subsequently conduct compositional studies to well within 1 au from the Sun. Observations: We obtained high-resolution spectra (Resolving Power approximately 25,000) of Comet ISON on four dates (UT 2013 Oct. 22, 24, 25, and Nov. 7) using NIRSPEC [4] at Keck 2, and on six dates (Nov. 15 through 19, and Nov. 22) using CSHELL [5] at the NASA InfraRed Telescope Facility (IRTF). Our observations provided a measure of volatile production rates and abundance ratios (relative to H_2O) over a wide range of heliocentric distances (R_h = updating au). NIRSPEC is cross-dispersed and so allows for simultaneous measure of multiple trace species together with H_2O, thereby avoiding most sources of systematic uncertainty, for example those associated with differences in slit losses and with flux calibration among settings. CSHELL has limited spectral coverage per setting, requiring judicious targeting of specific molecular emissions that (when possible) simultaneously encompass lines of H_2O and/or OH prompt emission, which serves as a proxy for water production provided equivalent OH line g-factors are known [6]. Despite this limitation, the IRTF is unique among ground-based IR observatories in its ability to conduct observations during daytime. This permitted obtaining compositional measurements of Comet ISON to a minimum solar elongation angle of 20 degrees. These will be discussed, and comparisons will be made with previously-reported results from observations with NIRSPEC [7] and HST [8]. Results: A suite of molecules (H_2O, CO, H_2CO, CH_3OH, C_2H_6, C_2H_2, CH_4, HCN, and NH_3) and radicals (OH

  18. Pre- and Post-Perihelion Observations of C/2009 P1 (Garradd): Evidence for an Oxygen-Rich Heritage?

    NASA Astrophysics Data System (ADS)

    DiSanti, Michael A.; Villanueva, G. L.; Paganini, L.; Bonev, B. P.; Keane, J. V.; Meech, K. J.; Mumma, M. J.

    updating

    We present pre- and post-perihelion observations of Comet C/2009 P1 (Garradd), on UT 2011 October 13 (heliocentric distance Rh = 1.83 AU) and 2012 January 8 (Rh = 1.57 AU), respectively, using the high-resolution infrared spectrometer (NIRSPEC) on the Keck II 10-m telescope on Mauna Kea, HI. On October 13, we obtained production rates for nine primary volatiles (native ices): H2O, CO, CH3OH, CH4, C2H6, HCN, C2H2, H2CO, and NH3. On January 8, we obtained production rates for three of these (H2O, CH4, and HCN) and sensitive upper limits for three others (C2H2, H2CO, and NH3). CO was enriched and C2H2 was depleted, yet C2H6 and CH3OH were close to their current mean values as measured in a dominant group of Oort cloud comets. We compare the composition of Garradd with other CO-rich comets C/1999 T1 (McNaught-Hartley), C/1996 B2 (Hyakutake), and C/1995 O1 (Hale-Bopp), and with other comets in our database. We discuss possible implications regarding the processing history of its pre-cometary ices. Our measurements of C/2009 P1 indicate consistent pre- and post-perihelion abundance ratios for trace species relative to H2O, suggesting we were measuring a homogeneous composition to the depths sampled in the nucleus. The overall gas production was lower post-perihelion despite its smaller heliocentric distance on January 8. This is qualitatively consistent with other studies of C/2009 P1. On October 13, the water profile showed a pronounced excess towards the Sun-facing hemisphere that was not seen in other molecules nor in the dust continuum. Inter-comparison of profiles from October 13 permitted us to estimate the fraction of all H2O released in the coma and contained within our slit. We attribute this excess H2O to release from relatively pure, water-rich icy grains. Similar evidence for extended release was not observed on January 8 and this, together with its overall lower gas production post-perihelion, suggests loss of one or more active regions on the nucleus

  19. Pre- and Post-perihelion Observations of C/2009 P1 (Garradd): Evidence for an Oxygen-rich Heritage?

    NASA Technical Reports Server (NTRS)

    Disanti, Michael Antonio; Villanueva, Geronimo Luis; Paganini, Lucas; Bonev, Boncho P.; Keane, Jacqueline V.; Meech, Karen J.; Mumma, Michael Jon

    updating

    We conducted pre- and post-perihelion observations of Comet C/2009 P1 (Garradd) on UT 2011 October 13 and 2012 January 8, at heliocentric distances of 1.83 and 1.57 AU, respectively, using the high-resolution infrared spectrometer (NIRSPEC) at the Keck II 10-m telescope on Mauna Kea, HI. Pre-perihelion, we obtained production rates for nine primary volatiles (native ices): H2O, CO, CH3OH, CH4, C2H6, HCN, C2H2, H2CO, and NH3. Post-perihelion, we obtained production rates for three of these (H2O, CH4, and HCN) and sensitive upper limits for three others (C2H2, H2CO, and NH3). CO was enriched and C2H2 was depleted, yet C2H6 and CH3OH were close to their currentmean values asmeasured in a dominant group of Oort cloud comets. This may indicate processing of its pre-cometary ices in a relatively oxygen-rich environment. Our measurements indicate consistent pre- and post-perihelion abundance ratios relative to H2O, suggesting we were measuring compositional homogeneity among measured species to the depths in the nucleus sampled. However, the overall gas production was lower post-perihelion despite its smaller heliocentric distance on January 8. This is qualitatively consistent with other studies of C/2009 P1, perhaps due to seasonal differences in the heating of one or more active regions on the nucleus. On October 13, the water profile showed a pronounced excess towards the Sun-facing hemisphere that was not seen in other molecules, including H2O on January 8, nor in the dust continuum. Inter-comparison of profiles from October 13 permitted us to quantify contributions due to release of H2O from the nucleus, and fromits release in the coma. This resulted in the latter source contributing 25-30% of the total observed water within our slit, which covered roughly +/-300 km by +/-4500 km from the nucleus. We attribute this excess H2O, which peaked at a mean projected distance of updating km from the nucleus, to release from water-rich, relatively pure icy grains

  20. Methyl Chloride V5 Region Line Shape Parameters and Rotational Constants for the V2, V5 and 2V3 Vibrational Band

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Brown, L. R.; Lacome, N.; Tarrago, G.

    updating

    Methyl chloride (CH3Cl) is relatively abundant in the Earth's atmosphere, and because it is easily photodissociated is an important source of the chlorine atoms which are involved in the destruction of atmospheric ozone.

  1. Dissociative photoionization of methyl chloride studied with threshold photoelectron-photoion coincidence velocity imaging

    NASA Astrophysics Data System (ADS)

    Tang, Xiaofeng; Zhou, Xiaoguo; Wu, Manman; Liu, Shilin; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    updating

    Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH3Cl+ ions was investigated in the excitation energy range of updating eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH3+ dissociated from CH3Cl+(A2A1 and B2E) ions were recorded. CH3+ was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH2Cl+ fragment was very low. For dissociation of CH3Cl+(A2A1) ions, a series of homocentric rings was clearly observed in the CH3+ image, which was assigned as the excitation of umbrella vibration of CH3+ ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH3+(11A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH3Cl+(B2E) ions, total kinetic energy released distribution for CH3+ fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B2E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH3Cl+, CH3+ formation from CH3Cl+(A2A1) ions was a rapid direct fragmentation, while CH3Cl+(B2E) ions statistically dissociated to CH3+ + Cl via internal conversion to the high vibrational states of X2E.

  2. Stable carbon isotope ratio of methyl chloride emitted from glasshouse-grown tropical plants and its implication for the global methyl chloride budget

    NASA Astrophysics Data System (ADS)

    Saito, Takuya; Yokouchi, Yoko

    updating

    Stable carbon isotope ratios of methyl chloride (CH3Cl) were measured in foliar emissions from 14 species of tropical plants growing in a glasshouse. The isotopic ratio of CH3Cl (arithmetic mean: -83.2 +/- 15.2‰) ranged from -56‰ to -114‰ that from dipterocarp trees (-87.4 +/- 12.3‰) was on average more depleted in 13C than that from tree ferns (-61.9 +/- 9.7‰). The isotopic ratio was lower than that of CH3Cl produced by other known sources (e.g., biomass burning and salt marshes), with the exception of that by dead leaves. Using the distinctive isotope ratio of CH3Cl emitted from tropical plants together with previously reported isotopic data of CH3Cl sources and sinks to an isotopic mass balance calculation, global CH3Cl emission by tropical plants was estimated to be approximately updating Gg yr-1 with uncertainties of 30-60%, which could account for 30-50% of the global emission.

  3. MEAN MINIMUM TEMPERATURE DATA - U.S HISTORICAL CLIMATOLOGY NETWORK (HCN )

    EPA Science Inventory

    The Carbon Dioxide Information Analysis Center, which includes the World Data Center-A for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the U.S. Department of Energy (DOE). CDIACs scope includes potentially anything and everything...

  4. MEAN AVERAGE TEMPERATURE DATA - U.S HISTORICAL CLIMATOLOGY NETWORK (HCN )

    EPA Science Inventory

    The Carbon Dioxide Information Analysis Center, which includes the World Data Center-A for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the U.S. Department of Energy (DOE). CDIACs scope includes potentially anything and everything...

  5. MEAN MAXIMUM TEMPERATURE DATA - U.S HISTORICAL CLIMATOLOGY NETWORK (HCN )

    EPA Science Inventory

    The Carbon Dioxide Information Analysis Center, which includes the World Data Center-A for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the U.S. Department of Energy (DOE). CDIACs scope includes potentially anything and everything...

  6. Effects of anesthetic agents on in vivo axonal HCN current in normal mice.

    PubMed

    Osaki, Yusuke; Nodera, Hiroyuki; Banzrai, Chimeglkham; Endo, Sachiko; Takayasu, Hirokazu; Mori, Atsuko; Shimatani, Yoshimitsu; Kaji, Ryuji

    updating

    The objective was to study the in vivo effects of anesthetic agents on peripheral nerve excitability. Normal male mice were anesthetized by either isoflurane inhalation or a combination of medetomidine, midazolam, and butorphanol intraperitoneal injection ("triple agents"). Immediately after induction, the tail sensory nerve action potential was recorded and its excitability was monitored. Under both anesthetic protocols, there was an interval excitability change by long hyperpolarizing currents. There was greater threshold reduction approximately 30min post induction, in comparison to immediately post induction. Other excitability parameters were stable over time. Modeling suggested interval suppression of internodal H conductance or leak current. Anesthetic agents affected responses to long hyperpolarizing currents. Axonal excitability during intraoperative monitoring may be affected by anesthetic agents. Interpretation of interval excitability changes under anesthesia requires caution, especially with long hyperpolarizing currents. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. The effects of CO and HCN on pole-jump avoidance-escape behavior

    NASA Technical Reports Server (NTRS)

    Winslow, W.

    updating

    The effects of carbon monoxide and mixtures of carbon monoxide and hydrogen cyanide at different concentrations and times of exposure were studied in a pole-jump apparatus. The time to loose the avoidance and escape response for mice exposed to these atmospheres was obtained. Correlations to predict the loss as a function of dosage are presented.

  8. The conceptual design of high temporal resolution HCN interferometry for atmospheric pressure air plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Liu, H. Q.; Jie, Y. X.; Wei, X. C.; Hu, L. Q.

    updating

    A heterodyne interferometer operating at the frequency f = 890 GHz has been designed for measuring the electron density of atmospheric pressure air plasmas, it's density range is from 1015 to 3×1019 m-3 and the pressure range is from 1 Pa to 20 kPa. The system is configured as a Mach\

  9. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results

    NASA Astrophysics Data System (ADS)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    updating

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 ± 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to be much

  10. Transport and Chemical Evolution over the Pacific (TRACE-P)Aircraft Mission: Design, Execution, and First Results

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    updating

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 plus or minus 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to

  11. Chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.

    updating

    Various aspects were studied of past or present chemistry in the atmospheres of the outer planets and their satellites using lab simulations. Three areas were studied: (1) organic chemistry induced by kinetically hot hydrogen atoms in the region of Jupiter's atmosphere containing the ammonia cirrus clouds; (2) the conversion of NH3 into N2 by plasmas associated with entry of meteors and other objects into the atmosphere of early Titan; and (3) the synthesis of simple hydrocarbons and HCN by lightning in mixtures containing N2, CH4, and NH3 representing the atmospheres of Titan and the outer planets. The results showed that: (1) hot H2 atoms formed from the photodissociation of NH3 in Jupiter's atmosphere could account for some of the atmospheric chemistry in the ammonia cirrus cloud region; (2) the thermalization of hot H2 atoms in atmospheres predominated by molecular H is not as rapid as predicted by elastic collision theory; (3) the net quantum loss of NH3 in the presence of a 200 fold excess of H2 is 0.02, much higher than was expected from the amount of H2 present; (4) the conversion of NH3 into N2 in plasmas associated with infalling meteors is very efficient and rapid, and could account for most of the N2 present on Titan; (5) the yields of C2H2 and HCN from lightning induced chemistry in mixtures of CH4 and N2 is consistent with quenched thermodynamic models of the discharge core; and (6) photolysis induced by the UV light emitted by the gases in the hot plasmas may account for some, if not most, of the excess production of C2H6 and the more complex hydrocarbons.

  12. Hypervolatiles in a Jupiter-family Comet: Observations of 45P/Honda-Mrkos-Pajdušáková Using iSHELL at the NASA-IRTF

    NASA Astrophysics Data System (ADS)

    DiSanti, Michael A.; Bonev, Boncho P.; Dello Russo, Neil; Vervack, Ronald J., Jr.; Gibb, Erika L.; Roth, Nathan X.; McKay, Adam J.; Kawakita, Hideyo; Feaga, Lori M.; Weaver, Harold A.

    updating

    We used the new high spectral resolution cross-dispersed facility spectrograph, iSHELL, at the NASA Infrared Telescope Facility on Maunakea, HI, to observe Jupiter-family comet (JFC) 45P/Honda-Mrkos-Pajdušáková. We report water production rates, as well as production rates and abundance ratios relative to H2O, for eight trace parent molecules (native ices), CO, CH4, H2CO, CH3OH, HCN, NH3, C2H2, and C2H6, on 2 days spanning UT 2017 January 6/7 and 7/8, shortly following perihelion. Trace species were measured simultaneously with H2O and/or OH prompt emission, a proxy for H2O production, thereby providing a robust and consistent means of establishing the native ice composition of 45P. Its favorable geocentric radial velocity (approximately -35 km s-1) permitted sensitive measures of the “hypervolatiles” CO and CH4, which are substantially undercharacterized in JFCs. Our results represent the most precise ground-based measures of CO and CH4 to date in a JFC, providing a foundation for building meaningful statistics regarding their abundances. The abundance ratio for CH4 in 45P (0.79% ± 0.06% relative to H2O) was consistent with its median value as measured among Oort Cloud comets, whereas CO (0.60% ± 0.04%) was strongly depleted. Compared with all measured comets, HCN (0.049% ± 0.012%) was strongly depleted, CH3OH (3.6% ± 0.3%) was enriched, and the remaining species were consistent with their respective median abundances. The volatile composition measured for 45P could indicate processing of ices prior to their incorporation into its nucleus. Spatial analysis of emissions suggests enhanced release of more volatile species into the sunward-facing hemisphere of the coma.

  13. Composition and Cosmogonic Parameters of the Chemically Distinct Comet C/2007 N3 (Lulin)

    NASA Astrophysics Data System (ADS)

    Gibb, Erika L.; Villanueva, G. L.; Bonev, B. P.; DiSanti, M. A.; Mumma, M. J.; Radeva, Y. L.

    updating

    Comets are remnants from the early solar system that retain the volatiles (ices) from the cold outer proto-planetary disk (beyond 5 AU) where they formed. Comet nuclei were among the first objects to accrete in the early solar nebula and many of them were subsequently incorporated into the growing giant planets. Gravitational scattering redistributed the remaining comet population by either sending them to the inner solar system, where they may have enriched the early biosphere, or scattering them into their present-day dynamical reservoirs. Since this early time, comets have been orbiting the Sun relatively untouched by processing mechanisms, until their orbits are perturbed towards the inner solar system. As such, they are believed to be among the most primitive objects in the solar system and may be representative of the material from which the solar system formed. Of particular interest is their icy volatile composition since other solar system objects have either lost or have had significant modifications to their volatile compositions since their formation. Many of the volatiles observed in comets are also important prebiotic species. For example, H2CO is a chemical precursor to sugars and HCN and NH3 are precursors of amino acids. Studying comets is therefore a vital link to understanding the origin and evolution of our planetary system and life on Earth. We obtained high-resolution, near-infrared spectroscopic observations of Comet C/2007 N3 (Lulin) on 30 January - 1 February 2009 with NIRSPEC on Keck II. Lulin is an Oort Cloud comet with a very large aphelion distance, suggesting that it may have been dynamically new. We report production rates of H2O, C2H6, HCN, C2H2, CH4, NH3, H2CO, CH3OH, and CO. We also report two cosmogonic parameters: D/H ratio in H2O and CH4, and isomeric spin temperatures. The implications for comet formations scenarios are discussed.

  14. Many-body calculations of molecular electric polarizabilities in asymptotically complete basis sets

    NASA Astrophysics Data System (ADS)

    Monten, Ruben; Hajgató, Balázs; Deleuze, Michael S.

    updating

    The static dipole polarizabilities of Ne, CO, N2, F2, HF, H2O, HCN, and C2H2 (acetylene) have been determined close to the Full-CI limit along with an asymptotically complete basis set (CBS), according to the principles of a Focal Point Analysis. For this purpose the results of Finite Field calculations up to the level of Coupled Cluster theory including Single, Double, Triple, Quadruple and perturbative Pentuple excitations [CCSDTQ(P)] were used, in conjunction with suited extrapolations of energies obtained using augmented and doubly-augmented Dunning's correlation consistent polarized valence basis sets of improving quality. The polarizability characteristics of C2H4 (ethylene) and C2H6 (ethane) have been determined on the same grounds at the CCSDTQ level in the CBS limit. Comparison is made with results obtained using lower levels in electronic correlation, or taking into account the relaxation of the molecular structure due to an adiabatic polarization process. Vibrational corrections to electronic polarizabilities have been empirically estimated according to Born-Oppenheimer Molecular Dynamical simulations employing Density Functional Theory. Confrontation with experiment ultimately indicates relative accuracies of the order of 1 to 2%.

  15. Seasonal Variations in Titan's Stratosphere Observed with Cassini/CIRS: Temperature, Trace Molecular Gas and Aerosol Mixing Ratio Profiles

    NASA Technical Reports Server (NTRS)

    Vinatier, S.; Bezard, B.; Anderson, C. M.; Coustenis, A.; Teanby, N.

    updating

    Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances.

  16. Multiwavelength Observations of Volatiles in Comets

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Kuan, Yi-Jehng; Chuang, Yo-Ling; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.

    updating

    Recently, there have been complimentary observations from multiple facilities to try to unravel the chemical complexity of comets. Incorporating results from various techniques, including: single-dish millimeter wavelength observations, interferometers, and/or IR spectroscopy, one can gain further insight into the abundances, production rates, distributions, and formation mechanisms of molecules in these objects [I]. Such studies have provided great detail towards molecules with a-typical chemistries, such as H2CO [2]. We report spectral observations of C/2006 M4 (SWAN), C/2007 N3 (Lulin), and C/2009 RI (McNaught) with the Arizona Radio Observatory's SMT and 12-m telescopes, as well as the NRAO Greenbank telescope and IRTFCSHELL. Multiple parent volatiles (HCN, CH3OH, CO, CH4, C2H6, and H2O) plus two photodissociation products (CS and OH) have been detected in these objects. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition. Previous work has revealed a range of abundances of parent species (from "organics-poor" to "organics-rich") with respect to water among comets [3,4,5], however the statistics are stiII poorly constrained and interpretations of the observed compositional diversity are uncertain.

  17. Retrievals of abundances of hydrocarbon and nitrile species in Titan’s upper atmosphere

    NASA Astrophysics Data System (ADS)

    Yung, Yuk; Fan, Siteng; Shemansky, D. E.; Li, Cheng; Gao, Peter

    updating

    We develop an innovative retrieval method for Titan occultation measurements by the Cassini UVIS experiment. The T35 occultation is analyzed to illustrate the methodology. A significant number of occultations observed using the UVIS spectrographs show loss of pointing control required for correction of the spectral vectors. Consequently, only three stellar occultations have been analyzed to date. We use the Markov Chain Monte-Carlo (MCMC) method to retrieve the abundances or upper limits of thirteen hydrocarbon and nitrile species (N2, CH4, C2H2, C2H4, C2H6, HCN, C4H2, C6N2, C6H6, tholin, HC3N, C2N2, NH3) along with the pointing error using the Cassini/UVIS simulator. These numbers are derived for the fast T35 occultation, which has never been analyzed because of large pointing errors. Uncertainty in the retrievals is determined using an intrinsic fitting probability distribution function. The Caltech/JPL photochemical and kinetics model, KINETICS, is used to calculate the atmospheric aforementioned species. Comparisons between model and observations reveal gaps in our current understanding of the chemical kinetics of hydrocarbons and nitrile species, especially for C6H6.

  18. Influence of Haze on Molecular Lines Formed in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Kim, Sang J.

    updating

    Radiative transfer calculations for the ro-vibrational lines of CH4, C2H2, C2H6, and HCN in atmosphere of Titan have been carried out without consideration of haze opacities (e.g., Yelle and Griffith, 2003), or only for very high (z > 500 km) atmospheric layers where haze influence is assumed to be negligible (e.g., Adriani et al. 2011; and García-Comas et al. 2011). Haze particles are found to exist in the high-altitude atmosphere of Titan, where the absorption lines of these molecules are modified by the haze opacities (Bellucci et al. 2009; Kim et al. 2011). We will present a discussion on the influence of the haze opacities on these molecular lines based on a preliminary result from updated radiative transfer calculations. References Adriani, A. et al. 2011. Icarus 214, 584-595. Bellucci, A. et al. 2009. Icarus 201, 198-216. García-Comas, M. et al. 2011. Icarus 214, 571-583. Kim, et al. updating. Planetary and Space Science 59, 699-704. Yelle, R.V., Griffith, C.A., 2003. Icarus 166, 107-115.

  19. Laboratory Studies of Low Temperature Rate Coefficients: The Atmospheric Chemistry of the Outer Planets and Titan

    NASA Technical Reports Server (NTRS)

    Bogan, Denis

    updating

    Laboratory measurements have been carried out to determine low temperature chemical rate coefficients of ethynyl radical (C2H) for the atmospheres of the outer planets and their satellites. This effort is directly related to the Cassini mission which will explore Saturn and Titan. A laser-based photolysis/infrared laser probe setup was used to measure the temperature dependence of kinetic rate coefficients from approx. equal to 150 to 350 K for C2H radicals with H2, C2H2, CH4, CD4, C2H4, C2H6, C3H8, n-C4H10, i-C4H10, neo-C5H12, C3H4 (methylacetylene and allene), HCN, and CH3CN. The results revealed discrepancies of an order of magnitude or more compared with the low temperature rate coefficients used in present models. A new Laval nozzle, low Mach number supersonic expansion kinetics apparatus has been constructed, resulting in the first measurements of neutral C2H radical kinetics at 90 K and permitting studies on condensable gases with insufficient vapor pressure at low temperatures. New studies of C 2H with acetylene have been completed.

  20. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    updating

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  1. Determination of chloromethane and dichloromethane in a tropical terrestrial mangrove forest in Brazil by measurements and modelling

    NASA Astrophysics Data System (ADS)

    Kolusu, S. R.; Schlünzen, K. H.; Grawe, D.; Seifert, R.

    updating

    Chloromethane (CH3Cl) and dichloromethane (CH2Cl2) are known to have both natural and anthropogenic sources to the atmosphere. From recent studies it is known that tropical and sub tropical plants are primary sources of CH3Cl in the atmosphere. In order to quantify the biogenic emissions of CH3Cl and CH2Cl2 from mangroves, field measurement were conducted in a tropical mangrove forest on the coast of Brazil. To the best of our knowledge these field measurements were the first of its kind conducted in the tropical mangrove ecosystem of Braganca. A mesoscale atmospheric model, MEsoscale TRAnsport and fluid (Stream) model (METRAS), was used to simulate passive tracers concentrations and to study the dependency of concentrations on type of emission function and meteorology. Model simulated concentrations were normalized using the observed field data. With the help of the mesoscale model results and the observed data the mangrove emissions were estimated at the local scale. By using this bottom-up approach the global emissions of CH3Cl and CH2Cl2 from mangroves were quantified. The emission range obtained with different emission functions and different meteorology are 4-7 Gg yr-1 for CH3Cl and 1-2 Gg yr2 for CH2Cl2. Based on the present study the mangroves contribute 0.3 percent of CH2Cl2 and 0.2 percent of CH3Cl in the global emission budget. This study corroborates the study by Manley et al. (2007) which estimated that mangroves produce 0.3 percent of CH3Cl in the global emission budget. Although they contribute a small percentage in the global budget, their long lifetime enables them to contribute to the destruction of ozone in the stratosphere. From the detailed analyses of the model results it can be concluded that meteorology has a larger influence on the variability of concentrations than the temporal variability of the emission function.

  2. Revisiting global fossil fuel and biofuel emissions of ethane

    NASA Astrophysics Data System (ADS)

    Tzompa-Sosa, Z. A.; Mahieu, E.; Franco, B.; Keller, C. A.; Turner, A. J.; Helmig, D.; Fried, A.; Richter, D.; Weibring, P.; Walega, J.; Yacovitch, T. I.; Herndon, S. C.; Blake, D. R.; Hase, F.; Hannigan, J. W.; Conway, S.; Strong, K.; Schneider, M.; Fischer, E. V.

    updating

    Recent measurements over the Northern Hemisphere indicate that the long-term decline in the atmospheric burden of ethane (C2H6) has ended and the abundance increased dramatically between 2010 and 2014. The rise in C2H6 atmospheric abundances has been attributed to oil and natural gas extraction in North America. Existing global C2H6 emission inventories are based on outdated activity maps that do not account for current oil and natural gas exploitation regions. We present an updated global C2H6 emission inventory based on 2010 satellite-derived CH4 fluxes with adjusted C2H6 emissions over the U.S. from the National Emission Inventory (NEI 2011). We contrast our global 2010 C2H6 emission inventory with one developed for 2001. The C2H6 difference between global anthropogenic emissions is subtle (7.9 versus 7.2 Tg yr-1), but the spatial distribution of the emissions is distinct. In the 2010 C2H6 inventory, fossil fuel sources in the Northern Hemisphere represent half of global C2H6 emissions and 95% of global fossil fuel emissions. Over the U.S., unadjusted NEI 2011 C2H6 emissions produce mixing ratios that are 14-50% of those observed by aircraft observations (updating). When the NEI 2011 C2H6 emission totals are scaled by a factor of 1.4, the Goddard Earth Observing System Chem model largely reproduces a regional suite of observations, with the exception of the central U.S., where it continues to underpredict observed mixing ratios in the lower troposphere. We estimate monthly mean contributions of fossil fuel C2H6 emissions to ozone and peroxyacetyl nitrate surface mixing ratios over North America of 1% and 8%, respectively.

  3. Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures.

    PubMed

    Altintas, Cigdem; Keskin, Seda

    updating

    Metal organic framework (MOF) membranes have been widely investigated for gas separation applications. Several MOFs have been recently examined for selective separation of C 2 H 6 . Considering the large number of available MOFs, it is not possible to fabricate and test the C 2 H 6 separation performance of every single MOF membrane using purely experimental methods. In this study, we used molecular simulations to assess the membrane-based C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 separation performances of 175 different MOF structures. This is the largest number of MOF membranes studied to date for C 2 H 6 separation. We computed adsorption selectivity, diffusion selectivity, membrane selectivity and gas permeability of MOFs for C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 mixtures. Our results show that a significant number of MOF membranes are C 2 H 6 selective for C 2 H 6 /C 2 H 4 separation in contrast to traditional nanoporous materials. Selectivity and permeability of MOF membranes were compared with other membrane materials, such as polymers, zeolites, and carbon molecular sieves. Several MOFs were identified to exceed the upper bound established for polymeric membranes and many MOF membranes exhibited higher gas permeabilities than zeolites and carbon molecular sieves. Examining the structure-performance relations of MOF membranes revealed that MOFs with cavity diameters between 6 and 9 Å, porosities lower than 0.50, and surface areas between updating m 2 g -1 have high C 2 H 6 selectivities. The results of this study will be useful to guide the experiments to the most promising MOF membranes for efficient separation of C 2 H 6 and to accelerate the development of new MOFs with high C 2 H 6 selectivities.

  4. Storage and recovery of methane-ethane mixtures in single shale pores

    NASA Astrophysics Data System (ADS)

    Wu, Haiyi; Qiao, Rui

    updating

    Natural gas production from shale formations has received extensive attention recently. While great progress has been made in understanding the adsorption and transport of single-component gas inside shales' nanopores, the adsorption and transport of multicomponent shale gas under reservoir conditions (CH4 and C2H6 mixture) has only begun to be studied. In this work, we use molecular simulations to compute the storage of CH4 and C2H6 mixtures in single nanopores and their subsequent recovery. We show that surface adsorption contributes greatly to the storage of CH4 and C2H6 inside the pores and C2H6 is enriched over CH4. The enrichment of C2H6 is enhanced as the pore is narrowed, but is weakened as the pressure increases. We show that the recovery of gas mixtures from the nanopores approximately follows the diffusive scaling law. The ratio of the production rates of C2H6 and CH4 is close to their initial mole ratio inside the pore despite that the mobility of pure C2H6 is much smaller than that of pure CH4 inside the pores. By using scale analysis, we show that the strong coupling between the transport of CH4 and C2H6 is responsible for the effective recovery of C2H6 from the nanopores.

  5. Ion-molecule condensation reactions: a mechanism for organic synthesis in ionized reducing atmospheres.

    PubMed

    Meot-Ner, M

    updating

    The CH3+ ion, formed in ionized methane, undergoes consecutive eliminative condensation reactions with methane to form the carbonium ions C2H5+, i-C3H7+ and t-C4H9+. At T smaller than 500 degrees K, NCH4 greater than 10(16) cm-3 these ions react with NH3 in competitive condensation -- H+ transfer reactions, e.g. C2H5 + NH3 M leads to C2H5NH3+ leads to NH4+ + C2H4 At particle densities of NCH4 smaller than 10(16) cm-3 proton transfer is the only significant reaction channel. At NCH4 greater than 10(17) cm-3 condensation constitutes 5--20% of the overall reactions. The product of the condensation reaction further associates with CO2 to form C2H5NH3+ . CO2; the atomic composition of this cluster ion is identical with the protonated amino acid alanine. The carbonium ions i-C3H7+ and t-C4H9+ condense also with HCN to yield protonated isocyanides. HCNH% also appears to condense with HCN at T greater than 570 degrees K, and form cluster ions with HCN at lower temperatures. The rate constants of the condensation reactions vary with temperature and pressure in a complex manner. Under conditions similar to those on Titan at an altitude of 100 km (T = updating degrees K, NCH4 approximately 10(18) cm-3), with a methane atmosphere containing 1% H2 and traces of NH3 and H2O, ion-molecule condensation reactions followed by H+ transfer are expected to lead to the atmospheric synthesis of C2H6, C3H8, CH3OH, C2H5OH and the terminal ions NH4+, CH3NH3+ and C2H5NH3+. At higher temperatures (250 degrees K smaller than T smaller than 400 degrees K), the synthesis of i-C4H10, i-C3H7OH and t-C4H9OH and of the ions i-C3H7NH3+ and t-C4H9NH3+ is also expected. Electron recombination of the terminal ions may yield amines, imines and nitriles. Cycles of protonation and dissociative recombination of the alkanes and alcohols produced in condensation reactions will also produce unsaturated hydrocarbons, ketones and aldehydes in the ionized atmosphere.

  6. Fascinating transformations of donor-acceptor complexes of group 13 metal (Al, Ga, In) derivatives with nitriles and isonitriles: from monomeric cyanides to rings and cages.

    PubMed

    Timoshkin, Alexey Y; Schaefer, Henry F

    updating

    thermodynamically favorable and is likely to be intramolecular. By contrast, intramolecular hydrogen transfer in H(3)M-NCH has been definitely ruled out. Head-to-tail dimeric species [H(3)M-(NC)H](2) are formed exothermically and exhibit low H.H distances, which can assist in hydrogen transfer, and are likely to be the starting point for H(2) elimination. Elimination of H(2), CH(4), and C(2)H(6) from X(3)M-(NC)R adducts is very favorable thermodynamically; by contrast, elimination of HCl and CH(3)Cl is highly unfavorable even if formation of oligomer species takes place. Thus, high-temperature generation of gas-phase rings and clusters has been predicted viable in the cases X = H,CH(3) and their presence in the reactor media should not be neglected. Moderate stability of [HMCH(2)NH](4) clusters (especially in the cases M = Ga, In) makes these species viable intermediates of gas-phase reactions. Their formation may be responsible for the carbon contamination in the course of metal organic chemical vapor deposition processes of group 13 binary nitrides.

  7. Variations in the methane budget over the last two millennia

    NASA Astrophysics Data System (ADS)

    Derendorp, L.

    updating

    Leaf litter is available at the Earth’s surface in large quantities. During the decomposition of leaf litter, volatile compounds can be released into the atmosphere, where they potentially influence local air quality, atmospheric chemistry or the global climate. In this thesis the focus was on the emission of C2-C5 hydrocarbons, molecular hydrogen (H2), carbon monoxide (CO) and methyl chloride (CH3Cl) from leaf litter and the factors that control the emissions were investigated. For different plant species, the emission rates of several C2-C5 hydrocarbons increased with temperature between 20 and 100°C according to the Arrhenius relation. When leaf litter was irradiated with UV, the emission increased linearly with the intensity of the UV. UVB radiation was more efficient in the generation of hydrocarbons from leaf litter than UVA. A simple upscaling showed that C2-C5 hydrocarbon emissions from leaf litter are likely insignificant for their global budgets, but may have a small influence on atmospheric chemistry on the local scale. Senescent and dead plant material releases carbon monoxide (CO), methane and larger hydrocarbons upon heating or irradiation with UV, but emissions of hydrogen (H2) have not been reported. In this study, H2 was released from leaf litter of Sequoiadendron giganteum in detectable amounts at temperatures above 45°C, whereas CO was also emitted at ambient temperature. Leaf litter has been identified as a potentially important source of CH3Cl. However, the factors controlling the emissions are unclear. Laboratory experiments have been performed in which CH3Cl emissions were measured from leaf litter of different plant species. For each investigated plant species, the CH3Cl emission rate strongly increased with temperature according to the Arrhenius relation. However, at constant temperature, large differences between different plants were observed. Therefore, CH3Cl emissions were measured from halophyte leaf litter with a varying chloride

  8. Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions.

    PubMed

    Smith, Mackenzie L; Kort, Eric A; Karion, Anna; Sweeney, Colm; Herndon, Scott C; Yacovitch, Tara I

    updating

    We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013.

  9. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    updating

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  10. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    updating

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  11. High-Resolution Spatially Gridded Biomass Burning Emissions Inventory In Asia

    NASA Astrophysics Data System (ADS)

    Vadrevu, K. P.; Lau, W. K.; da Silva, A.; Justice, C. O.

    updating

    Biomass burning is long recognized an important source of greenhouse gas (GHG) emissions (CO2, CO, CH4, H2, CH3Cl, NO, HCN, CH3CN, COS, etc) and aerosols. In the Asian region, the current estimates of greenhouse gas emissions and aerosols from biomass burning are severely constrained by the lack of reliable statistics on fire distribution and frequency, and the lack of accurate estimates of area burned, fuel load, etc. As a part of NASA funded interdisciplinary research project entitled "Effects of biomass burning on water cycle and climate in the monsoon Asia", we initially developed a high resolution spatially gridded emissions inventory from the biomass burning for Indo-Ganges region and then extended the inventory to the entire Asia. Active fires from MODIS as well as high resolution LANDSAT data have been used to fine-tune the MODIS burnt area products for estimating the emissions. Locally based emission factors were used to refine the gaseous emissions. The resulting emissions data has been gridded at 5-minute intervals. We also compared our emission estimates with the other emission products such as Global Fire Assimilation System (GFAS), Quick fire emissions database (QFED) and Global Fire Emissions Database (GFED). Our results revealed significant vegetation fires from Myanmar, India, Indonesia, China, Laos, Thailand, Cambodia and Vietnam. These seven countries accounted for 92.4% of all vegetation fires in the Asian region. Satellite-based vegetation fire analysis showed the highest fire occurrence in the closed to open shrub land category, (19%) followed by closed to open, broadleaved evergreen-semi deciduous forest (16%), rain fed croplands (17%), post flooded or irrigated croplands (12%), mosaic cropland vegetation (11%), mosaic vegetation/cropland (10%). Emission contribution from agricultural fires was significant, however, showed discrepancies due to low confidence in burnt areas and lack of crop specific emission factors. Further, our results

  12. The acute toxicity of brief exposures to HF, HCl, NO2 and HCN singly and in combination with CO.

    DOT National Transportation Integrated Search

    updating

    Experiments were conducted with animals to determine the toxic effect of short-term exposures to some of the products produced in aircraft fires; the products were tested both singly and in combination with carbon monoxide. These studies show the tox...

  13. ACE-FTS observations of pyrogenic trace species in boreal biomass burning plumes during BORTAS

    NASA Astrophysics Data System (ADS)

    Tereszchuk, K. A.; González Abad, G.; Clerbaux, C.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.-F.; Bernath, P. F.

    updating

    To further our understanding of the effects of biomass burning emissions on atmospheric composition, the BORTAS campaign (BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) was conducted on 12 July to 3 August 2011 during the boreal forest fire season in Canada. The simultaneous aerial, ground and satellite measurement campaign sought to record instances of boreal biomass burning to measure the tropospheric volume mixing ratios (VMRs) of short- and long-lived trace molecular species from biomass burning emissions. The goal was to investigate the connection between the composition and the distribution of these pyrogenic outflows and their resulting perturbation to atmospheric chemistry, with particular focus on oxidant species to determine the overall impact on the oxidizing capacity of the free troposphere. Measurements of pyrogenic trace species in boreal biomass burning plumes were made by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) onboard the Canadian Space Agency (CSA) SCISAT-1 satellite during the BORTAS campaign. Even though biomass burning emissions are typically confined to the boundary layer, outflows are often injected into the upper troposphere by isolated convection and fire-related convective processes, thus allowing space-borne instruments to measure these pyrogenic outflows. An extensive set of 14 molecules - CH3OH, C2H2, C2H6, C3H6O, CO, HCN, HCOOH, HNO3, H2CO, NO, NO2, OCS, O3, and PAN - have been analysed. Included in this analysis is the calculation of age-dependent sets of enhancement ratios for each of the species originating from fires in North America (Canada, Alaska) and Siberia for a period of up to 7 days. Ratio values for the shorter lived primary pyrogenic species decrease over time primarily due to oxidation by the OH radical as the plume ages and values for longer lived species such as HCN and C2H6 remain relatively unchanged. Increasing negative values are

  14. Characterizing Abundances of Volatiles in Comets Through Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.; Kuan, Yi-Jehng; Chuang, Yo-Ling; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.; Coulson, Iain; Haynes, Lillian; Stenborg, Maria

    updating

    Recently, there have been complimentary observations from multiple facilities to try to unravel the chemical complexity of comets. Incorporating results from various techniques, including: single-dish millimeter wavelength observations, interferometers, and/or IR spectroscopy, one can gain further insight into the abundances, production rates, distributions, and formation mechanisms of molecules in these objects [I]. Such studies have provided great detail towards molecules with a-typical chemistries, such as H2CO [2]. We report spectral observations of C/2007 N3 (Lulin), C/2009 R1 (McNaught), 103P/Hartley 2, and C/2009 P1 (Garradd) with the Arizona Radio Observatory's SMT and 12-m telescopes, as well as the NRAO Greenbank telescope and IRTF-CSHELL. Multiple parent volatiles (HCN, CH3OH, CO, CH4, C2H6, and H2O) as well as a number of daughter products (CS and OH) have been detected in these objects. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition. Previous work has revealed a range of abundances of parent species (from "organics-poor" to "organics-rich") with respect to water among comets [3,4,5], however the statistics are still poorly constrained and interpretations of the observed compositional diversity are uncertain. We gratefully acknowledge support from the NSF Astronomy and Astrophysics Program, the NASA Planetary Astronomy Program, NASA Planetary Atmospheres Program, and the NASA Astrobiology Program.

  15. Modeling the neutral gas and dust coma of Comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Rubin, Martin; Tenishev, Valeriy M.; Combi, Michael R.; Hansen, Kenneth C.; Gombosi, Tamas I.; Altwegg, Kathrin; Balsiger, Hans

    updating

    The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer (NMS) and the Dust Impact Detection System (DIDSY) onboard the Giotto spacecraft which flew-by at comet 1P/Halley in 1986. We further show that our model is in good agreement to measurements obtained by the International Ultraviolet Explorer (IUE), sounding rocket experiments, and the International Halley Watch (IHW). The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique [Tenishev et al. (2008, Astrophys. J., 685, 659-677)] by tracking trajectories of gas molecules and dust grains under the influence of the comet's weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO). This work has been supported by JPL subcontract 1266313 under NASA grant NMO710889, NASA planetary atmospheres program grant NNX09AB59G, grant AST-0707283 from the NSF Planetary Astronomy program, and the Swiss National Science Foundation.

  16. Infrared Spectroscopy of Parent Volatiles in Comets: Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael A.

    updating

    Current cometary orbits provide information on their recent dynamical history. However, determining a given comet's formation region from its current dynamical state alone is complicated by radial migration in the proto-planetary disk and by dynamical interactions with the growing giant planets. Because comets reside for long periods of time in the outer Solar System, the ices contained in their nuclei (native ices) retain a relatively well-preserved footprint of when and where they formed, and this in turn can provide clues to conditions in the formation epoch. As a comet approaches the Sun, sublimation of its native ices releases parent volatiles into the coma where they can be measured spectroscopically. The past to - 15 years have seen the advent of infrared spectrometers with high sensitivity between about 2.8 and 5.0 micron, enabling a taxonomy among comets based on abundances of parent volatiles (e.g., H2O, CO, CH4, C2H6, HCN, CH30H, H2CO, NH3). Such molecules are of keen interest to Astrobiology, as they include important pre-biotic species that likely were required for the emergence of life on Earth and perhaps elsewhere. Approximately 20 comets have thus far been characterized, beginning with C/1996 82 (Hyakutake) in 1996. Molecular production rates are established through comparison of observed emission line intensities with those predicted by quantum mechanical fluorescence models. Abundances of parent volatiles (relative to H2O) vary among even the relatively small number of comets sampled, with the most volatile species (CO and CH4) displaying the largest variations. Techniques developed for measuring parent volatile abundances in comets will be discussed, as will possible implications for their formation.

  17. Cloud Condensation in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Anderson, Carrie M.

    updating

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability

  18. Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Fan, Siteng; Wong, Michael L.; Liang, Mao-Chang; Shia, Run-Lie; Kammer, Joshua A.; Yung, Yuk L.; Summers, Michael E.; Gladstone, G. Randall; Young, Leslie A.; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; Stern, S. Alan; New Horizons Science Team

    updating

    The New Horizons flyby of Pluto confirmed the existence of hazes in its atmosphere. Observations of a large high- to low- phase brightness ratio, combined with the blue color of the haze (indicative of Rayleigh scattering), suggest that the haze particles are fractal aggregates, perhaps analogous to the photochemical hazes on Titan. Therefore, studying the Pluto hazes can shed light on the similarities and differences between the Pluto and Titan atmospheres. We model the haze distribution using the Community Aerosol and Radiation Model for Atmospheres assuming that the distribution is shaped by downward transport and coagulation of particles originating from photochemistry. Hazes composed of both purely spherical and purely fractal aggregate particles are considered. General agreement between model results and solar occultation observations is obtained with aggregate particles when the downward mass flux of photochemical products is equal to the column-integrated methane destruction rate ∼1.2 × 10-14 g cm-2 s-1, while for spherical particles the mass flux must be 2-3 times greater. This flux is nearly identical to the haze production flux of Titan previously obtained by comparing microphysical model results to Cassini observations. The aggregate particle radius is sensitive to particle charging effects, and a particle charge to radius ratio of 30 e-/μm is necessary to produce ∼0.1-0.2 μm aggregates near Pluto's surface, in accordance with forward scattering measurements. Such a particle charge to radius ratio is 2-4 times higher than those previously obtained for Titan. Hazes composed of spheres with the same particle charge to radius ratio have particles that are 4 times smaller at Pluto's surface. These results further suggest that the haze particles are fractal aggregates. We also consider the effect of condensation of HCN, C2H2, C2H4, and C2H6 on the haze particles, which may play an important role in shaping their altitude and size distributions.

  19. Theoretical study on the gas adsorption capacity and selectivity of CPM-200-In/Mg and CPM-200-In/Mg-X (-X = -NH2, -OH, -N, -F).

    PubMed

    Liu, Xiao-le; Chen, Guang-Hui; Wang, Xiu-Jun; Li, Peng; Song, Yi-Bing; Li, Rui-Yan

    updating

    The adsorption capacities of a heterometallic metal-organic framework (CPM-200-In/Mg) to VOCs (HCHO, C 2 H 4 , CH 4 , C 2 H 2 , C 3 H 8 , C 2 H 6 , C 2 H 3 Cl, C 2 H 2 Cl 2 , CH 2 Cl 2 and CHCl 3 ) and some inorganic gas molecules (HCN, SO 2 , NO, CO 2 , CO, H 2 S and NH 3 ), as well as its selectivity in ternary mixture systems of natural gas and post-combustion flue gas are theoretically explored at the grand canonical Monte Carlo (GCMC) and density functional theory (DFT) levels. It is shown that CPM-200-In/Mg is suitable for the adsorption of VOCs, particularly for HCHO (up to 0.39 g g -1 at 298 K and 1 bar), and the adsorption capacities of some inorganic gas molecules such as SO 2 , H 2 S and CO 2 match well with the sequence of their polarizability (SO 2 > H 2 S > CO 2 ). The large adsorption capacities of HCN and HCHO in the framework result from the strong interaction between adsorbates and metal centers, based on analyzing the radial distribution functions (RDF). Comparing C 2 H 4 and CH 4 molecules interacting with CPM-200-In/Mg by VDW interaction, we speculate that the high adsorption capacities of their chlorine derivatives in the framework could be due to the existence of halogen bonding or strong electrostatic and VDW interactions. It is found that the basic groups, including -NH 2 , -N and -OH, can effectively improve both the adsorption capacities and selectivity of CPM-200-In/Mg for harmful gases. Note that the adsorption capacity of CPM-200-In/Mg-NH 2 (site 2) (245 cm 3 g -1 ) for CO 2 exceeded that of MOF-74-Mg (228 cm 3 g -1 ) at 273 K and 1 bar and that for HCHO can reach 0.41 g g -1 , which is almost twice that of 438-MOF and nearly 45 times of that in active carbon. Moreover, for natural gas mixtures, the decarburization and desulfurization abilities of CPM-200-In/Mg-NH 2 (site 2) have exceeded those of the MOF-74 series, while for post-combustion flue gas mixtures, the desulfurization ability of CPM-200-In/Mg-NH 2 (site 2) is still

  20. Transmission Spectra of Transiting Planet Atmospheres: Model Validation and Simulations of the Hot Neptune GJ 436b for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Shabram, Megan; Fortney, Jonathan J.; Greene, Thomas P.; Freedman, Richard S.

    updating

    We explore the transmission spectrum of the Neptune-class exoplanet GJ 436b, including the possibility that its atmospheric opacity is dominated by a variety of nonequilibrium chemical products. We also validate our transmission code by demonstrating close agreement with analytic models that use only Rayleigh scattering or water vapor opacity. We find broad disagreement with radius variations predicted by another published model. For GJ 436b, the relative coolness of the planet's atmosphere, along with its implied high metallicity, may make it dissimilar in character compared to "hot Jupiters." Some recent observational and modeling efforts suggest low relative abundances of H2O and CH4 present in GJ 436b's atmosphere, compared to calculations from equilibrium chemistry. We include these characteristics in our models and examine the effects of absorption from methane-derived higher-order hydrocarbons. To our knowledge, the effects of these nonequilibrium chemical products on the spectra of close-in giant planets have not previously been investigated. Significant absorption from HCN and C2H2 is found throughout the infrared, while C2H4 and C2H6 are less easily seen. We perform detailed simulations of James Webb Space Telescope observations, including all likely noise sources, and find that we will be able to constrain chemical abundance regimes from this planet's transmission spectrum. For instance, the width of the features at 1.5, 3.3, and 7 μm indicates the amount of HCN versus C2H2 present. The NIRSpec prism mode will be useful due to its large spectral range and the relatively large number of photo-electrons recorded per spectral resolution element. However, extremely bright host stars like GJ 436 may be better observed with a higher spectroscopic resolution mode in order to avoid detector saturation. We find that observations with the MIRI low-resolution spectrograph should also have high signal-to-noise in the 5-10 μm range due to the brightness of the star

  1. A Tale of “Two” Comets: The Primary Volatile Composition of Comet 2P/Encke Across Apparitions

    NASA Astrophysics Data System (ADS)

    Roth, Nathan X.; Gibb, Erika L.; Bonev, Boncho P.; DiSanti, Michael A.; Dello Russo, Neil; Vervack, Ronald J.; McKay, Adam J.; Kawakita, Hideyo

    updating

    2P/Encke is one of the most frequently observed comets in history, yet its highly favorable 2017 apparition allowed the first comprehensive comparison of primary volatile abundances in the same comet across multiple apparitions. It offered an opportunity to address pressing questions in cometary science, including investigating evolutionary and/or heliocentric distance effects on volatile production, sampling the hypervolatiles CO and CH4 in an ecliptic comet, and probing volatile release at small Rh (0.4 AU). The faint nature of ecliptic comets and low geocentric velocity during most apparitions make these observations in the near-infrared rare (in particular at small Rh) and of high scientific impact. On March 21, 22, and 25 we characterized the volatile composition of 2P post-perihelion using the high-resolution near-infrared iSHELL spectrograph at the 3 m NASA-IRTF on Maunakea, HI. We detected fluorescent emission from eight primary volatiles (H2O, CO, C2H6, CH3OH, CH4, H2CO, NH3, and HCN) and three secondary volatiles (OH*, NH2, and CN). Upper limits were derived for OCS and C2H2. We report rotational temperatures, production rates, and mixing ratios (with respect to H2O). Compared to median relative abundances in comets observed in the near-infrared to date, mixing ratios of trace gases in 2P/Encke are depleted for all detected species except HCN and NH3, which are consistent with the median. The detection of the hypervolatiles CO and CH4 is particularly notable given the paucity of measurements of these species in ecliptic comets. We observed significant differences in primary volatile composition compared to published pre-perihelion results from the 2003 apparition at larger Rh (~1.2 AU) (Radeva et al. 2013). We will discuss possible mechanisms for these effects, including asymmetry about perihelion in 2P (Sekanina 1988a, b), and discuss the results in the context of findings from the Rosetta mission and ground-based studies of comets. This work was

  2. Efficient purification of ethene by an ethane-trapping metal-organic framework

    PubMed Central

    Liao, Pei-Qin; Zhang, Wei-Xiong; Zhang, Jie-Peng; Chen, Xiao-Ming

    updating

    Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert C2H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2H4/C2H6) through 1 litre of this C2H6 selective adsorbent directly produces 56 litres of C2H4 with 99.95%+ purity (required by the C2H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2H6 selective materials can only produce ca. ⩽ litre, and conventional C2H4 selective adsorbents require at least four adsorption–desorption cycles to achieve the same C2H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C2H6 instead of the more polar competitor C2H4. PMID:updating

  3. Methyl chloride and methyl bromide emissions from baking: an unrecognized anthropogenic source.

    PubMed

    Thornton, Brett F; Horst, Axel; Carrizo, Daniel; Holmstrand, Henry

    updating

    Methyl chloride and methyl bromide (CH3Cl and CH3Br) are the largest natural sources of chlorine and bromine, respectively, to the stratosphere, where they contribute to ozone depletion. We report the anthropogenic production of CH3Cl and CH3Br during breadbaking, and suggest this production is an abiotic process involving the methyl ester functional groups in pectin and lignin structural polymers of plant cells. Wide variations in baking styles allow only rough estimates of this flux of methyl halides on a global basis. A simple model suggests that CH3Br emissions from breadbaking likely peaked circa 1990 at approximately 200tonnes per year (about 0.3% of industrial production), prior to restrictions on the dough conditioner potassium bromate. In contrast, CH3Cl emissions from breadbaking may be of similar magnitude as acknowledged present-day CH3Cl industrial emissions. Because the mechanisms involve functional groups and compounds widely found in plant materials, this type of methyl halide production may occur in other cooking techniques as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Atmospheric histories of halocarbons from analysis of Antarctic firn air: Methyl bromide, methyl chloride, chloroform, and dichloromethane

    NASA Astrophysics Data System (ADS)

    Trudinger, C. M.; Etheridge, D. M.; Sturrock, G. A.; Fraser, P. J.; Krummel, P. B.; McCulloch, A.

    updating

    We reconstruct atmospheric levels of methyl bromide (CH3Br), methyl chloride (CH3Cl), chloroform (CHCl3), and dichloromethane (CH2Cl2) back to before 1940 using measurements of air extracted from firn on Law Dome in Antarctica. The firn air at this site has a relatively narrow age spread, giving high time resolution reconstructions. The CH3Br reconstructions confirm previously measured firn records but with more temporal structure. Our CH3Cl reconstruction is slightly different from previous reconstructions, raising some questions about CH3Cl in the firn. Our reconstructions for CHCl3 and CH2Cl2 are the first published records of concentration prior to direct atmospheric measurements. A two-box atmospheric model is used to investigate the budgets of these gases. Much of the variation in CH3Cl can be explained by biomass burning emissions that increase up to 1980 and then are relatively stable apart from some high burning years such as updating. The CHCl3 firn reconstruction suggests that the anthropogenic source for CHCl3 is greater than previously thought, with human influence on the soil source a possible important contributor here. The CH2Cl2 firn reconstruction is consistent with industrial emission estimates based on audited sales data but suggests that the ocean source of CH2Cl2 is less than previously estimated.

  5. GTE_TRACEP_DC8 Parameters 6

    Atmospheric Science Data Center

    updating

    ... Trichloroethylene (C2HCl3) Carbon tetrachloride (CCl4) Methylene bromide (CH2Br2) Chlorobromomethane (CH2BrCl) Dichloromethane ... Methylbromide (CH3Br) Chloroform (CH3CCl3) Methyl Chloride (CH3Cl) Methyl Iodide (CH3I) Chlorodibromomethane (CHBr2Cl) ...

  6. GTE_TRACEP_P3B Parameters 1

    Atmospheric Science Data Center

    updating

    ... Methyl bromide (CH3Br) Bromopropane (C3H7 Br) Methyl Chloride (CH3Cl) Ethyl Chloride (C2H5Cl) Vinyl chloride (C2H3Cl) ... Trichloroethylene (C2HCl3) Tetrachloroethylene (C2Cl4) Methylene bromide (CH2Br2) Chlorodibromomethane (CHClBr2) Bromoform ...

  7. GTE_TRACEP_DC8 Parameters 4

    Atmospheric Science Data Center

    updating

    ... Methyl bromide (CH3Br) Bromopropane (C3H7Br) Methyl Chloride(CH3Cl) Ethyl Chloride (C2H5Cl) Vinyl chloride (C2H3Cl) ... Trichloroethylene (C2HCl3) Tetrachloroethylene (C2Cl4) Methylene bromide (CH2Br2) Chlorodibromomethane(CHClBr2) Bromoform ...

  8. GTE_TRACEP_P3B Parameters 4

    Atmospheric Science Data Center

    updating

    ... Trichloroethylene (C2HCl3) Carbon tetrachloride (CCl4) Methylene bromide (CH2Br2) Chlorobromomethane (CH2BrCl) Dichloromethane ... Methylbromide (CH3Br) Chloroform (CH3CCl3) Methyl Chloride (CH3Cl) Methyl Iodide (CH3I) Chlorodibromomethane (CHBr2Cl) ...

  9. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane.

    PubMed Central

    Dilworth, M J; Eady, R R; Eldridge, M E

    1988-01-01

    1. The vanadium (V-) nitrogenase of Azobacter chroococcum transfers up to 7.4% of the electrons used in acetylene (C2H2) reduction for the formation of ethane (C2H6). The apparent Km for C2H2 (6 kPa) is the same for either ethylene (C2H4) or ethane (C2H6) formation and much higher than the reported Km values for C2H2 reduction to C2H4 by molybdenum (Mo-) nitrogenases. Reduction of C2H2 in 2H2O yields predominantly [cis-2H2]ethylene. 2. The ratio of electron flux yielding C2H6 to that yielding C2H4 (the C2H6/C2H4 ratio) is increased by raising the ratio of Fe protein to VFe protein and by increasing the assay temperature up to at least 40 degrees C. pH values above 7.5 decrease the C2H6/C2H4 ratio. 3. C2H4 and C2H6 formation from C2H2 by V-nitrogenase are not inhibited by H2. CO inhibits both processes much less strongly than it inhibits C2H4 formation from C2H2 with Mo-nitrogenase. 4. Although V-nitrogenase also catalyses the slow CO-sensitive reduction of C2H4 to C2H6, free C2H4 is not an intermediate in C2H6 formation from C2H2. 5. Propyne (CH3C identical to CH) is not reduced by the V-nitrogenase. 6. Some implications of these results for the mechanism of C2H6 formation by the V-nitrogenase are discussed. PMID:3162672

  10. Near-thermal reactions of Au(+)(1S,3D) with CH3X (X = F,Cl).

    PubMed

    Taylor, William S; Matthews, Cullen C; Hicks, Ashley J; Fancher, Kendall G; Chen, Li Chen

    updating

    Reactions of Au(+)((1)S) and Au(+)((3)D) with CH(3)F and CH(3)Cl have been carried out in a drift cell in He at a pressure of 3.5 Torr at both room temperature and reduced temperatures in order to explore the influence of the electronic state of the metal on reaction outcomes. State-specific product channels and overall two-body rate constants were identified using electronic state chromatography. These results indicate that Au(+)((1)S) reacts to yield an association product in addition to AuCH(2)(+) in parallel steps with both neutrals. Product distributions for association vs HX elimination were determined to be 79% association/21% HX elimination for X = F and 50% association/50% HX elimination when X = Cl. Reaction of Au(+)((3)D) with CH(3)F also results in HF elimination, which in this case is thought to produce (3)AuCH(2)(+). With CH(3)Cl, Au(+)((3)D) reacts to form AuCH(3)(+) and CH(3)Cl(+) in parallel steps. An additional product channel initiated by Au(+)((3)D) is also observed with both methyl halides, which yields CH(2)X(+) as a higher-order product. Kinetic measurements indicate that the reaction efficiency for both Au(+) states is significantly greater with CH(3)Cl than with CH(3)F. The observed two-body rate constant for depletion of Au(+)((1)S) by CH(3)F represents less than 5% of the limiting rate constant predicted by the average dipole orientation model (ADO) at room temperature and 226 K, whereas CH(3)Cl reacts with Au(+)((1)S) at the ADO limit at both room temperature and 218 K. Rate constants for depletion of Au(+)((3)D) by CH(3)F and CH(3)Cl were measured at 226 and 218 K respectively, and indicate that Au(+)((3)D) is consumed at approximately 2% of the ADO limit by CH(3)F and 69% of the ADO limit by CH(3)Cl. Product formation and overall efficiency for all four reactions are consistent with previous experimental results and available theoretical models.

  11. Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes.

    PubMed

    Li, Xiu-Yuan; Li, Yong-Zhi; Yang, Yun; Hou, Lei; Wang, Yao-Yu; Zhu, Zhonghua

    updating

    The first strontium-based MOF possessing polar tubular channels embedded with a high density of open Lewis acidic metal sites and basic oxalamide groups was constructed, which shows not only a high CO 2 and C 2 H 6 adsorption capability and significant selectivity for CO 2 over both CH 4 and CO, and for C 2 H 6 over CH 4 , but also size-selective chemical conversion of CO 2 with epoxides producing cyclic carbonates under ambient conditions.

  12. Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America

    NASA Astrophysics Data System (ADS)

    Franco, B.; Mahieu, E.; Emmons, L. K.; Tzompa-Sosa, Z. A.; Fischer, E. V.; Sudo, K.; Bovy, B.; Conway, S.; Griffin, D.; Hannigan, J. W.; Strong, K.; Walker, K. A.

    updating

    Sharp rises in the atmospheric abundance of ethane (C2H6) have been detected from 2009 onwards in the Northern Hemisphere as a result of the unprecedented growth in the exploitation of shale gas and tight oil reservoirs in North America. Using time series of C2H6 total columns derived from ground-based Fourier transform infrared (FTIR) observations made at five selected Network for the Detection of Atmospheric Composition Change sites, we characterize the recent C2H6 evolution and determine growth rates of ˜5% yr-1 at mid-latitudes and of ˜3% yr-1 at remote sites. Results from CAM-chem simulations with the Hemispheric Transport of Air Pollutants, Phase II bottom-up inventory for anthropogenic emissions are found to greatly underestimate the current C2H6 abundances. Doubling global emissions is required to reconcile the simulations and the observations prior to 2009. We further estimate that North American anthropogenic C2H6 emissions have increased from 1.6 Tg yr-1 in 2008 to 2.8 Tg yr-1 in 2014, i.e. by 75% over these six years. We also completed a second simulation with new top-down emissions of C2H6 from North American oil and gas activities, biofuel consumption and biomass burning, inferred from space-borne observations of methane (CH4) from Greenhouse Gases Observing SATellite. In this simulation, GEOS-Chem is able to reproduce FTIR measurements at the mid-latitudinal sites, underscoring the impact of the North American oil and gas development on the current C2H6 abundance. Finally we estimate that the North American oil and gas emissions of CH4, a major greenhouse gas, grew from 20 to 35 Tg yr-1 over the period updating, in association with the recent C2H6 rise.

  13. Selective methane chlorination to methyl chloride by zeolite Y-based catalysts

    NASA Astrophysics Data System (ADS)

    Joo, Hyeonho; Kim, Daeho; Lim, Kwang Soo; Choi, Yong Nam; Na, Kyungsu

    updating

    The CH4 chlorination over Y zeolites was investigated to produce CH3Cl in a high yield. Three different catalytic systems based on Y zeolite were tested for enhancement of CH4 conversion and CH3Cl selectivity: (i) HY zeolites in H+-form having various Si/Al ratios, (ii) Pt/HY zeolites supporting Pt metal nanoparticles, (iii) Pt/NaY zeolites in Na+-form supporting Pt metal nanoparticles. The reaction was carried out using the gas mixture of CH4 and Cl2 with the respective flow rates of 15 and 10 mL min-1 at 300-350 °C using a fixed-bed reactor under a continuous gas flow condition (gas hourly space velocity = 3000 mL g-1 h-1). Above the reaction temperature of 300 °C, the CH4 chlorination is spontaneous even in the absence of catalyst, achieving 23.6% of CH4 conversion with 73.4% of CH3Cl selectivity. Under sufficient supplement of thermal energy, Cl2 molecules can be dissociated to two chlorine radicals, which triggered the C-H bond activation of CH4 molecule and thereby various chlorinated methane products (i.e., CH3Cl, CH2Cl2, CHCl3, CCl4) could be produced. When the catalysts were used under the same reaction condition, enhancement in the CH4 conversion was observed. The Pt-free HY zeolite series with varied Si/Al ratios gave around 27% of CH4 conversion, but there was a slight decrease in CH3Cl selectivity with about 64%. Despite the difference in acidity of HY zeolites having different Si/Al ratios, no prominent effect of the Si/Al ratios on the catalytic performance was observed. This suggests that the catalytic contribution of HY zeolites under the present reaction condition is not strong enough to overcome the spontaneous CH4 chlorination. When the Pt/HY zeolite catalysts were used, the CH4 conversion reached further up to 30% but the CH3Cl selectivity decreased to 60%. Such an enhancement of CH4 conversion could be attributed to the strong catalytic activity of HY and Pt/HY zeolite catalysts. However, both catalysts induced the radical cleavage of Cl2

  14. Adsorptive separation studies of ethane-methane and methane-nitrogen systems using mesoporous carbon.

    PubMed

    Yuan, Bin; Wu, Xiaofei; Chen, Yingxi; Huang, Jianhan; Luo, Hongmei; Deng, Shuguang

    updating

    Adsorptive separations of C(2)H(6)/CH(4) and CH(4)/N(2) binary mixtures are of paramount importance from the energy and environmental points of view. A mesoporous carbon adsorbent was synthesized using a soft template method and characterized with TEM, TGA, and nitrogen adsorption/desorption. Adsorption equilibrium and kinetics of C(2)H(6), CH(4), and N(2) on the mesoporous carbon adsorbent were determined at 278, 298, and 318 K and pressures up to 100 kPa. The adsorption capacities of C(2)H(6) and CH(4) on the mesoporous carbon adsorbent at 298 K and 100 kPa are 2.20 mmol/g and 1.05 mmol/g, respectively. Both are significantly higher than those of many adsorbents including pillared clays and ETS-10 at a similar condition. The equilibrium selectivities of C(2)H(6)/CH(4) and CH(4)/N(2) at 298 K are 19.6 and 5.8, respectively. It was observed that the adsorption of C(2)H(6), CH(4), and N(2) gases on the carbon adsorbent was reversible with modest isosteric heats of adsorption, which implies that this carbon adsorbent can be easily regenerated in a cyclic adsorption process. These results suggest that the mesoporous carbon studied in this work is a promising alternative adsorbent for the separations of C(2)H(6)/CH(4) and CH(4)/N(2) gas mixtures. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Detection of abundant ethane and methane, along with carbon monoxide and water, in comet C/1996 B2 Hyakutake: evidence for interstellar origin

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; Dello Russo, N.; Fomenkova, M.; Magee-Sauer, K.; Kaminski, C. D.; Xie, D. X.

    updating

    The saturated hydrocarbons ethane (C2H6) and methane (CH4) along with carbon monoxide (CO) and water (H2O) were detected in comet C/1996 B2 Hyakutake with the use of high-resolution infrared spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The inferred production rates of molecular gases from the icy, cometary nucleus (in molecules per second) are 6.4 X 10(26) for C2H6, 1.2 X 10(27) for CH4, 9.8 X 10(27) for CO, and 1.7 X 10(29) for H2O. An abundance of C2H6 comparable to that of CH4 implies that ices in C/1996 B2 Hyakutake did not originate in a thermochemically equilibrated region of the solar nebula. The abundances are consistent with a kinetically controlled production process, but production of C2H6 by gas-phase ion molecule reactions in the natal cloud core is energetically forbidden. The high C2H6/CH4 ratio is consistent with production of C2H6 in icy grain mantles in the natal cloud, either by photolysis of CH4-rich ice or by hydrogen-addition reactions to acetylene condensed from the gas phase.

  16. Investigating model deficiencies in the global budget of ethane

    NASA Astrophysics Data System (ADS)

    Tzompa Sosa, Z. A.; Keller, C. A.; Turner, A. J.; Mahieu, E.; Franco, B.; Fischer, E. V.

    updating

    Many locations in the Northern Hemisphere show a statistically-significant sharp increase in measurements of ethane (C2H6) since 2009. It is hypothesized that the recent massive growth of shale gas exploitation in North America could be the source of this change. However, state-of-the-science chemical transport models are currently unable to reproduce the hemispheric burden of C2H6 or the recent sharp increase, pointing to a potential problem with current emission inventories. To resolve this, we used space-borne CH4 observations from the Greenhouse Gases Observing SATellite (GOSAT) to derive C2H6 emissions. By using known emission ratios to CH4, we estimated emissions of C2H6 from oil and gas activities, biofuels, and biomass burning over North America. The GEOS-Chem global chemical transport model was used to simulate atmospheric abundances of C2H6 with the new emissions estimates. The model is able to reproduce Northern Hemisphere surface concentrations. However, the model significantly under-predicts the amount of C2H6 throughout the column and the observed Northern Hemispheric gradient as diagnosed by comparisons to aircraft observations from the Hiaper Pole-to-Pole (HIPPO) Campaign.

  17. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN

    Treesearch

    I. J. Simpson; S. K. Akagi; B. Barletta; N. J. Blake; Y. Choi; G. S. Diskin; A. Fried; H. E. Fuelberg; S. Meinardi; F. S. Rowland; S. A. Vay; A. J. Weinheimer; P. O. Wennberg; P. Wiebring; A. Wisthaler; M. Yang; R. J. Yokelson; D. R. Blake

    updating

    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic...

  18. Studies of the Electrochemical Detection of Thiols. Part 2. An Investigation of the Reactions Occurring in NAIAD, and the Effect of HCN , Guaiacol and GB on these Reactions

    DTIC Science & Technology

    updating

    OF THE REDUCTION OF CHOLINE T DISULPHIDE (5 x 10-4 M) AT A PLATINUM ELECTRODE UNDER STATIONARY, DEOXYGENATED CONDITIONS Sweep rate Cathodic current... voltametry (updating s) which reoxidises at E = -0.7V. This product is not thiocholine, which is oxidised at E = +0.8V, and was not 3; identified. Thus, in

  19. Ethane C-C clumping in natural gas : a proxy for cracking processes ?

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Ferreira, A. A.; Santos Neto, E. V.; Eiler, J. M.

    updating

    Ethane (C2H6) is the second-most abundant alkane in most natural gas reservoirs, and is used to produce ethylene for petrochemical industries. It is arguably the simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on Δ13C2H6in natural gas: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that undergo thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; diffusive fractionation; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will control isotopic variations among natural ethanes, but we think it likely that addition of this new isotopic proxy will reveal new insights into the natural chemistry of ethane. We have developed a method to measure the abundance of 13C2H6 in natural samples, using high-resolution mass spectrometry. We define Δ13C2H6 as updatingC2H6/12C2H6)measured/(13C2H6/12C2H6)stochastic -1). We studied several suites of natural gas samples and experimentally produced or modified ethane. Natural ethanes, including closely related samples from a single natural gas field, exhibit surprisingly large ranges in Δ13C2H6 (4 ‰ overall; up to 3 ‰ in one gas field). Such ranges cannot be explained by thermodynamic equilibrium at a range of different temperatures, or by diffusive fractionation. Kinetic isotope effects associated with 'cracking' reactions, and/or inheritance of non-equilibrium carbon isotope structures from source organics are more likely causes. We observe a correlation between Δ13C2H6 and the concentration of alkanes other than methane in several suites of natural gases, suggesting the causes of clumped isotope variations are tied to the controls on gas wetness. An experiment examining ethane residual to high-temperature pyrolysis

  20. The 12C/13C Isotopic Ratio In Titan's Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Achterberg, R. K.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Irwin, P. G.; Cassini CIRS Team

    updating

    Isotopic ratios in planetary atmospheres are of considerable interest, yielding insights both about currently occurring processes, and also the formation and early evolution of the body. Before Cassini, ground-based measurements of Titan's 12C/13C in HCN showed no firm evidence of deviation from the terrestrial inorganic standard (88.9) - albeit with large error bars of 20% - contrasting the enrichment in nitrogen (15N/14N≈4.5 terrestrial). Since 2004, the Composite Infrared Spectrometer (CIRS) instrument on Cassini has recorded spectra of Titan's stratosphere globally, including the emissions of multiple isotopologues for certain hydrocarbons. We selected spectra for analysis from four flybys (T4, T12, T19, T22), covering five latitudes from 65°S to 71°N. By means of a radiative transfer code and inversion scheme, we have first modeled the ν4 band of 12CH4 at 1304 cm-1 to retrieve stratospheric temperatures, and subsequently the emissions of 13CH4, 12C2H2, 13C12CH2, 12C2H6 and 13C12CH6. Our results indicate 12C/13C = 81.2±2.0 for all three species combined over all five latitudes, in excellent agreement with the Huygens GCMS value of 12CH4/13CH4 = 82.3±1.0 (Niemann et al. 2005), some 9% lower than terrestrial inorganic, and lower than in ethane on Saturn (updating)) and Jupiter (updating)) (Sada et al. 1996). No latitude variation was detected, however the 12C/13C in the C2 species (83.9±3.1 in acetylene, 89.9±7.2 in ethane) were consistently higher than in methane (78.0±2.7) after considering random errors. Although it is possible that this is a real chemical or physical (condensation) effect, it is more likely due to systematic errors in our temperature profile, as our spectra do not yield independent temperature information at 10 mbar where the emissions of 13C12CH2 and 13C12CH6 originate, and we default to the Huygens probe temperatures. In future, this problem may be resolved by modeling CIRS limb spectra.

  1. A Contextual Comparison of Native Ice Abundances in Comet C/2013 US10 (Catalina) based on Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    DiSanti, Michael A.; Gibb, Erika L.; Roth, Nathanial; Bonev, Boncho P.; Keane, Jacqueline; Meech, Karen Jean; Villanueva, Geronimo Luis; Paganini, Lucas; Mumma, Michael J.

    updating

    The primitive nature of comets makes them the best available carriers of information pertaining to conditions in the early solar system. High-resolution spectrometers operating at IR wavelengths (~ 1 - 5 µm) permit quantifying molecular species (aka "parent volatiles") released into the coma upon sublimation of ices contained in the cometary nucleus (i.e., native ices). Over the past 20 years we used first CSHELL at the IRTF, then NIRSPEC at Keck and CRIRES at the VLT, amassing production rates and abundance ratios in 30-plus comets.We present a summary of molecular abundances in long period Comet C/2013 US10 (Catalina), which passed perihelion on UT 2015 November 15.7 at heliocentric distance Rh = 0.822 AU. We used CSHELL on UT 2015 November 23 (Rh = 0.84 AU), December 15 - 17 (Rh = 1.0 AU) and 2016 February 28 (Rh = 1.95 AU), and NIRSPEC on 2016 January 24 (Rh = 1.49 AU). We targeted H2O, CO, H2CO, CH3OH, OCS, HCN, NH3, CH4, C2H2, and C2H6, and obtained production rates or stringent upper limits for all of these. This allowed testing for potential changes in relative abundances as a function of Rh. Such IR measurements spanning a range in Rh are still rare, but are very important for testing possible heterogeneous nucleus composition and/or heliocentric dependence of abundances, for example through release from grains heated in the coma. Our measurements will be inter-compared, and also placed in the context of our current (and continually evolving) compositional taxonomy of comets.We gratefully acknowledge support from the NASA Solar System Observations/Planetary Astronomy Program (SSO15-0028 to MAD, PAST11-0045 to MJM), Planetary Atmospheres Program (NNX12AG60G to BPB), NASA Astrobiology Institute (13-13NAI7-0032 to MJM, NN09DA77A to KJM), and NSF Astronomy and Astrophysics Research Grants (AST-1211362 to BPB and ELG, and AST-1413736 to KJM). The IRTF is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space

  2. Derivation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom

    NASA Astrophysics Data System (ADS)

    Wilson, D.; Dixon, S. D.; Artz, R. R. E.; Smith, T. E. L.; Evans, C. D.; Owen, H. J. F.; Archer, E.; Renou-Wilson, F.

    updating

    Drained peatlands are significant hotspots of carbon dioxide (CO2) emissions and may also be more vulnerable to fire with its associated gaseous emissions. Under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, greenhouse gas (GHG) emissions from peatlands managed for extraction are reported on an annual basis. However, the Tier 1 (default) emission factors (EFs) provided in the IPCC 2013 Wetlands Supplement for this land use category may not be representative in all cases and countries are encouraged to move to higher-tier reporting levels with reduced uncertainty levels based on country- or regional-specific data. In this study, we quantified (1) CO2-C emissions from nine peat extraction sites in the Republic of Ireland and the United Kingdom, which were initially disaggregated by land use type (industrial versus domestic peat extraction), and (2) a range of GHGs that are released to the atmosphere with the burning of peat. Drainage-related methane (CH4) and nitrous oxide (N2O) emissions as well as CO2-C emissions associated with the off-site decomposition of horticultural peat were not included here. Our results show that net CO2-C emissions were strongly controlled by soil temperature at the industrial sites (bare peat) and by soil temperature and leaf area index at the vegetated domestic sites. Our derived EFs of 1.70 (±0.47) and 1.64 (±0.44) t CO2-C ha-1 yr-1 for the industrial and domestic sites respectively are considerably lower than the Tier 1 EF (2.8 ± 1.7 t CO2-C ha-1 yr-1) provided in the Wetlands Supplement. We propose that the difference between our derived values and the Wetlands Supplement value is due to differences in peat quality and, consequently, decomposition rates. Emissions from burning of the peat (g kg-1 dry fuel burned) were estimated to be approximately 1346 CO2, 8.35 methane (CH4), 218 carbon monoxide (CO), 1.53 ethane (C2H6), 1.74 ethylene (C2H4), 0.60 methanol (CH3OH), 2.21 hydrogen

  3. Titan's Aerosol and Condensation Cloud Properties in the Far-IR Between 2005 and 2010

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie; Samuelson, Robert

    updating

    ) (125 micron), possibly due to C2H6 ice or dominated by an ethane-acetylene composite ice, given that CzH6 then C2H2 are the two most abundant hydrocarbons next to methane in Titan's atmosphere.

  4. A Competitive Kinetics Study of the Reaction of Cl with CS2 in Air at 298 K

    NASA Technical Reports Server (NTRS)

    Wallington, Timothy J.; Andino, Jean M.; Potts, Alan R.; Wine, Paul H.

    updating

    The relative rate technique has been used to investigate the kinetics of the reaction of Cl atoms with carbon disulfide, CS2, at 700 Torr total pressure of air at 298 K. The decay rate of CS2 was measured relative to CH4, CH3Cl and CHF2CL. For experiments using CH4 and CH3Cl references, the decay rate of CS2 was dependent on the ratio of the concentration of the reference to that of CS2. We ascribe this behavior to the generation of OH radicals in the system leading to complicated secondary chemistry. From experiments using CHF2Cl we are able to assign an upper limit of 4 x 10(exp -15) cu cm/(molecule s) for the overall reaction, Cl + CS2 yields products.

  5. An ab initio MO study on the hydrolysis of methyl chloride with explicit consideration of 13 water molecules

    NASA Astrophysics Data System (ADS)

    Yamataka, Hiroshi; Aida, Misako

    updating

    Ab initio MO calculations (HF/3-21G, HF/6-31G, HF/6-31+G* and MP2/6-31+G*) were carried out on the hydrolysis of CH 3Cl in which up to 13 water solvent molecules were explicitly considered. For n⩾3, three important stationary points ( cmp1, TS, and cmp2) were detected in the course of the reaction. The calculations for the n=13 system at the HF/6-31+G* level reproduced the experimental activation enthalpy and the secondary deuterium kinetic isotope effect. The two reacting bond lengths in the transition state are 1.975 Å (O-C) and 2.500 Å (C-Cl), and CH 3Cl is surrounded by 13 water molecules without any apparent vacant space. The proton transfer from the attacking water to the water cluster occurs after TS is reached.

  6. Role of ultrafast dissociation in the fragmentation of chlorinated methanes

    NASA Astrophysics Data System (ADS)

    Kokkonen, E.; Jänkälä, K.; Patanen, M.; Cao, W.; Hrast, M.; Bučar, K.; Žitnik, M.; Huttula, M.

    updating

    Photon-induced fragmentation of a full set of chlorinated methanes (CH3Cl, CH2Cl2, CHCl3, CCl4) has been investigated both experimentally and computationally. Using synchrotron radiation and electron-ion coincidence measurements, the dissociation processes were studied after chlorine 2p electron excitation. Experimental evidence for CH3Cl and CH2Cl2 contains unique features suggesting that fast dissociation processes take place. By contrast, CHCl3 and CCl4 molecules do not contain the same features, hinting that they experience alternative mechanisms for dissociation and charge migration. Computational work indicates differing rates of charge movement after the core-excitation, which can be used to explain the differences observed experimentally.

  7. Role of ultrafast dissociation in the fragmentation of chlorinated methanes.

    PubMed

    Kokkonen, E; Jänkälä, K; Patanen, M; Cao, W; Hrast, M; Bučar, K; Žitnik, M; Huttula, M

    updating

    Photon-induced fragmentation of a full set of chlorinated methanes (CH 3 Cl, CH 2 Cl 2 , CHCl 3 , CCl 4 ) has been investigated both experimentally and computationally. Using synchrotron radiation and electron-ion coincidence measurements, the dissociation processes were studied after chlorine 2p electron excitation. Experimental evidence for CH 3 Cl and CH 2 Cl 2 contains unique features suggesting that fast dissociation processes take place. By contrast, CHCl 3 and CCl 4 molecules do not contain the same features, hinting that they experience alternative mechanisms for dissociation and charge migration. Computational work indicates differing rates of charge movement after the core-excitation, which can be used to explain the differences observed experimentally.

  8. [Raman Characterization of Hydrate Crystal Structure Influenced by Mine Gas Concentration].

    PubMed

    Zhang, Bao-yong; Zhou, Hong-ji; Wu, Qiang; Gao, Xia

    updating

    CH4 /C2H6/N2 mixed hydrate formation experiments were performed at 2 degrees C and 5 MPa for three different mine gas concentrations (CH4/C2H6/N2, G1 = 54 : 36 : 10, G2 = 67.5 : 22.5 : 10, G3 = 81 : 9 : 10). Raman spectra for hydration products were obtained by using Microscopic Raman Spectrometer. Hydrate structure is determined by the Raman shift of symmetric C-C stretching vibration mode of C2H6 in the hydrate phase. This work is focused on the cage occupancies and hydration numbers, calculated by the fitting methods of Raman peaks. The results show that structure I (s I) hydrate forms in the G1 and G2 gas systems, while structure II (s II) hydrate forms in the G3 gas system, concentration variation of C2H6 in the gas samples leads to a change in hydrate structure from s I to s II; the percentages of CH4 and C2H6 in s I hydrate phase are less affected by the concentration of gas samples, the percentages of CH4 are respectively 34.4% and 35.7%, C2H6 are respectively 64.6% and 63.9% for gas systems of G1 and G2, the percentages of CH4 and 2 H6 are respectively 73.5% and 22.8% for gas systems of G3, the proportions of object molecules largely depend on the hydrate structure; CH4 and C2H6 molecules occupy 98%, 98% and 92% of the large cages and CH4 molecules occupy 80%, 60% and 84% of the small cages for gas systems of G1, G2 and G3, respectively; additionally, N2 molecules occupy less than 5% of the small cages is due to its weak adsorption ability and the lower partial pressure.

  9. Continuous flow stable isotope methods for study of δ13C fractionation during halomethane production and degradation

    USGS Publications Warehouse

    Kalin, Robert M.; Hamilton, John T.G.; Harper, David B.; Miller, Laurence G.; Lamb, Clare; Kennedy, James T.; Downey, Angela; McCauley, Sean; Goldstein, Allen H.

    updating

    Gas chromatography/mass spectrometry/isotope ratio mass spectrometry (GC/MS/IRMS) methods for δ13C measurement of the halomethanes CH3Cl, CH3Br, CH3I and methanethiol (CH3SH) during studies of their biological production, biological degradation, and abiotic reactions are presented. Optimisation of gas chromatographic parameters allowed the identification and quantification of CO2, O2, CH3Cl, CH3Br, CH3I and CH3SH from a single sample, and also the concurrent measurement of δ13C for each of the halomethanes and methanethiol. Precision of δ13C measurements for halomethane standards decreased (±0.3, ±0.5 and ±1.3‰) with increasing mass (CH3Cl, CH3Br, CH3I, respectively). Given that carbon isotope effects during biological production, biological degradation and some chemical (abiotic) reactions can be as much as 100‰, stable isotope analysis offers a precise method to study the global sources and sinks of these halogenated compounds that are of considerable importance to our understanding of stratospheric ozone destruction. 

  10. Effect of various coal contaminants on the performance of solid oxide fuel cells: Part II. ppm and sub-ppm level testing

    NASA Astrophysics Data System (ADS)

    Bao, JianEr; Krishnan, Gopala N.; Jayaweera, Palitha; Lau, Kai-Hung; Sanjurjo, Angel

    The poisoning effects of various trace contaminants in the coal-derived syngas stream at ppm and sub-ppm level on the performance of Ni-YSZ/YSZ/LSM solid oxide fuel cells were studied at extended duration. The thermochemical nature of impurities such as PH 3(g) and CH 3Cl(g) in presence and absence of water steam was analyzed by a high temperature mass spectrometer. Only less than half of PH 3(g) is hydrolyzed, and CH 3Cl(g) also co-exist with HCl(g). After a certain duration of exposure, 1 ppm AsH 3(g), 0.5 ppm PH 3(g), and 2.5 ppm CH 3Cl(g) all caused some degree of degradation to the power density at 750 °C. Whereas 1 ppm of H 2S(g) resulted in immediate performance loss. The mechanisms of degradation are mainly divided into two categories: surface adsorption effect (for S and Cl) and bulk reaction effect (for As and P). The controversies regarding the poisoning effect and mechanism of S are also discussed with the aid of thermodynamic equilibrium composition calculation.

  11. Theoretical studies on Grignard reagent formation: radical mechanism versus non-radical mechanism.

    PubMed

    Chen, Zhe-Ning; Fu, Gang; Xu, Xin

    updating

    Here we present a systematic theoretical investigation on the mechanisms of Grignard reagent formation (GRF) for CH(3)Cl reacting with Mg atom, Mg(2) and a series of Mg clusters (Mg(4)-Mg(20)). Our calculations reveal that the ground state Mg atom is inactive under matrix condition, whereas it is active under metal vapor synthesis (MVS) conditions. On the other hand, the excited state Mg ((3)P) atom, as produced by laser-ablation, can react with CH(3)Cl barrierlessly, and hence is active under matrix condition. We predict that the bimagnesium Grignard reagent, though often proposed, can barely be observed experimentally, due to its high reactivity towards additional CH(3)Cl to produce more stable Grignard reagent dimer, and that the cluster Grignard reagent RMg(4)X possesses a flat Mg(4) unit rather than a tetrahedral geometry. Our calculations further reveal that the radical pathway (T4) is prevalent on Mg, Mg(2) and Mg(n) clusters of small size, while the no-radical pathway (T2), which starts at Mg(4), becomes competitive with T4 as the cluster size increases. A structure-reactivity relationship between barrier heights and ionization potentials of Mg(n) is established. These findings not only resolve controversy in experiment and theory, but also provide insights which can be used in the design of effective synthesis approaches for the preparation of chiral Grignard reagents.

  12. Nonenzymatic and enzymatic hydrolysis of alkyl halides: A theoretical study of the SN2 reactions of acetate and hydroxide ions with alkyl chlorides

    PubMed Central

    Maulitz, Andreas H.; Lightstone, Felice C.; Zheng, Ya-Jun; Bruice, Thomas C.

    updating

    The SN2 displacements of chloride ion from CH3Cl, C2H5Cl, and C2H4Cl2 by acetate and hydroxide ions have been investigated, using ab initio molecular orbital theory at the HF/6–31+G(d), MP2/6–31+G(d), and MP4/6–31+G(d) levels of theory. The central barriers (calculated from the initial ion–molecule complex) of the reactions, the differences of the overall reaction energies, and the geometries of the transition states are compared. Essential stereochemical changes before and after the displacement reactions are described for selected cases. The gas phase reactions of hydroxide with CH3Cl, C2H5Cl, and C2H4Cl2 have no overall barrier, but there is a small overall barrier for the reactions of acetate with CH3Cl, C2H5Cl, and C2H4Cl2. A self-consistent reaction field solvation model was used to examine the SN2 reactions between methyl chloride and hydroxide ion and between 1,2-dichloroethane and acetate in solution. As expected, the reactions in polar solvent have a large barrier. However, the transition state structures determined by ab initio calculations change only slightly in the presence of a highly polar solvent as compared with the gas phase. We also calibrated the PM3 method for future study of an enzymatic SN2 displacement of halogen. PMID:9192609

  13. The evolution of volatile production in C/2009 P1 (Garradd) during its updating apparition

    NASA Astrophysics Data System (ADS)

    Gicquel, A.; Milam, S.; Cordiner, M.; Villanueva, G.; Charnley, S.; Coulson, I.; Remijan, A.; DiSanti, M.; Mumma, M.; Szutowicz, S.

    updating

    Comets are likely to be the most pristine objects in our Solar System. They provide a record of the physical and chemical conditions in the protosolar nebula between about 5 and 40 au during the epoch when the distinct cometary populations were being assembled (Festou et al. 2004; Jewitt 2004; Mumma & Charnley 2011). Cometary nuclei today reside in (at least) two distinct reservoirs, the Oort Cloud (OC) and the Kuiper Belt (KB). Past observations have shown that comets appear to contain a mixture of products from both interstellar and nebular chemistries and could also have been important for initiating prebiotic chemistry on the early Earth (Ehrenfreund & Charnley 2000). Although there are some differences, the volatile composition of cometary ices is generally similar to the inventory of molecules detected in the ices and gas of dense molecular clouds. Given the gradient in physical conditions expected across the proto-Solar nebula, chemical diversity in the comet population is to be expected. Here we report an analysis of long-term ground-based radio observations towards comet C/2009 P1 (Garradd). Comet C/2009 P1 Garradd is an OC comet that reached perihelion (at heliocentric distance R_h = 1.55 au) in late December 2011 and had its closest approach to the Earth on 5 March 2012. Like C/1995 O1 (Hale-Bopp) at 7.2 au, Garradd exhibited unusual activity at large R_h (8.68 au), displaying a 15'' diameter circular coma (IAUC 9062). It is well known that some comets exhibit volatile activity at large heliocentric distances, where water ice cannot sublime efficiently. Infrared (IRTF/CSHELL, Keck 2/NIRSPEC, and VLT/CRIRES) spectroscopy of Garradd showed clear CO (R1 & R2) emission near λ = 4.7 μ m (2150 cm^{-1}), as well as a suite of molecules (e.g., C_2H_6, CH_4, CH_3OH, H_2CO, HCN, C_2H_2, NH_3) that were also detected near or beyond R_h = 2 au (Villanueva et al. 2012; Paganini et al. 2012; DiSanti et al. 2014). We monitored the abundance of parent volatiles in

  14. Collision Processes in Methyl Chloride

    NASA Astrophysics Data System (ADS)

    Pape, Travis W.

    Time-resolved, double resonance spectroscopy using infrared pump radiation and millimeter-wave and submillimeter -wave probe radiation (IRMMDR) has been used to study rotational and vibrational collision processes in CH_3 ^{35}Cl and CH_3 ^{37}Cl. A collisional energy transfer model using only five parameters for rotational processes plus those needed for vibrational processes accurately models over 500 IRMMDR time responses for 105 pump-probe combinations, using three pump coincidences and a wide range of probed rotational states. Previous studies in this laboratory revealed that J- and K-changing rotational energy transfer (RET) have vastly different characteristics in CH_3 F. As was found for CH_3F, J-changing rotational collision rates in CH_3 Cl are modeled accurately by both the Statistical Power Gap law and the Infinite Order Sudden approximation using a power law expression for the basis rates. However, in contrast to CH_3F, where all IRMMDR time responses for K-changing collisions have the same shape, many time responses of CH_3 Cl states populated by K-changing collisions contain an additional early-time feature (ETF) that varies with pump and probe state. Nonetheless, a simple generalization of the previously reported model for K-changing collisions is shown to account for all of the additional features observed in CH_3Cl. Rather than observing a fixed temperature for K-changing collisions as was the case for CH_3F, the temperature is found to be a function of time for CH_3 Cl. Moreover, the two new parameters this adds to the RET model are related to known physical quantities. A qualitative argument of K-changing collisions based on a classical picture is offered to explain the difference between the measured J- and K-changing state-to-state rates in CH_3Cl. As was observed in CH_3F, the principal vibrational collision processes are the near -resonant V-swap process, in which two colliding molecules exchange a quantum of vibrational energy, and a

  15. Global atmospheric concentrations and source strength of ethane

    NASA Technical Reports Server (NTRS)

    Blake, D. R.; Rowland, F. S.

    updating

    A study of the variation in ethane (C2H6) concentration between northern and southern latitudes over three years is presented together with a new estimate of its source strength. Ethane concentrations vary from 0.07 to 2 p.p.b.v. (parts per billion by volume) in air samples collected in remote surface locations in the Pacific (latitude 71 N-47 S) in all four seasons between September 1984 and June 1985. The variations are consistent with southerly transport from sources located chiefly in the Northern Hemisphere, further modified by seasonal variations in the strength of the reaction of C2H6 with OH radicals. These global data can be combined with concurrent data for CH4 and the laboratory reaction rates of each with OH to provide an estimate of three months as the average atmospheric lifetime for C2H6 and 13 + or - 3 Mtons for its annual atmospheric release.

  16. On the Sources of Methane to the Los Angeles Atmosphere

    NASA Technical Reports Server (NTRS)

    Wennberg, Paul O.; Mui, Wilton; Fischer, Marc L.; Wunch, Debra; Kort, Eric A.; Blake, Donald R.; Atlas, Elliot L.; Santoni, Gregory W.; Wofsy, Steven C.; Diskin, Glenn S.;

    updating

    We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH4) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH4 emissions are 0.44 +/- 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH4), ethane (C2H6), and carbon monoxide (CO), together with measured C2H6 to CH4 enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C2H6 to CH4 ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C2H6 is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 +/- 0.15 Tg yr-1) of the excess CH4 in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C2H6 in the region. In particular, emissions of C2H6 (and CH4) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH4 emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.

  17. Hydrogen addition reactions of aliphatic hydrocarbons in comets

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.

    updating

    Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.

  18. On the sources of methane to the Los Angeles atmosphere.

    PubMed

    Wennberg, Paul O; Mui, Wilton; Wunch, Debra; Kort, Eric A; Blake, Donald R; Atlas, Elliot L; Santoni, Gregory W; Wofsy, Steven C; Diskin, Glenn S; Jeong, Seongeun; Fischer, Marc L

    updating

    We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH(4)) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH(4) emissions are 0.44 ± 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH(4)), ethane (C(2)H(6)), and carbon monoxide (CO), together with measured C(2)H(6) to CH(4) enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C(2)H(6) to CH(4) ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C(2)H(6) is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 ± 0.15 Tg yr(-1)) of the excess CH(4) in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C(2)H(6) in the region. In particular, emissions of C(2)H(6) (and CH(4)) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH(4) emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.

  19. The relative abundance of ethane to acetylene in the Jovian stratosphere

    NASA Technical Reports Server (NTRS)

    Allen, Mark; Yung, Yuk L.; Gladstone, G. R.

    updating

    The inclusion of the results of laboratory kinetics studies on the reaction of C2H3 and H2 to yield C2H4, which is suggestive of an efficient chemical mechanism for the hydrogenation of C2H2 to C2H6, can be included in a comprehensive model of the Jupiter atmosphere hydrocarbon photochemistry to explain the observed altitude variation of the C2H6/C2H2 ratio. The sensitivity of these results to uncertainties in key low-temperature rate constants is demonstrated. These key reaction-rate constants decrease with falling temperature.

  20. A study of ethane on Saturn in the 3 micron region

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Larson, H. P.; Fink, U.; Smith, H. A.

    updating

    C2H6 has been detected in absorption on Saturn from 3-micron airborne spectra. Based on comparisons with laboratory spectra of C2H6, the ethane abundance has been estimated at 7.5 plus or minus 3.5 cm-amagat, equivalent to a column abundance of 3.0 plus or minus 1.4 cm-amagat. The results support expectations that CH4 photolysis is a major disequilibrating mechanism in the upper atmosphere of the outer planets and Titan.

  1. Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer

    SciTech Connect

    Richter, Dirk; Weibring, P.; Walega, J.

    updating

    We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.

  2. On the Stratospheric Chemistry of Hydrogen Cyanide

    NASA Technical Reports Server (NTRS)

    Kleinbohl, Armin; Toon, Geoffrey C.; Sen, Bhaswar; Blavier, Jean-Francois L.; Weisenstein, Debra K.; Strekowski, Rafal S.; Nicovich, J. Michael; Wine, Paul H.; Wennberg, Paul O.

    updating

    HCN profiles measured by solar occultation spectrometry during 10 balloon flights of the JPL MkIV instrument are presented. The HCN profiles reveal a compact correlation with stratospheric tracers. Calculations with a 2D-model using established rate coefficients for the reactions of HCN with OH and O(1D) severely underestimate the measured HCN in the middle and upper stratosphere. The use of newly available rate coefficients for these reactions gives reasonable agreement of measured and modeled HCN. An HCN yield of approx.30% from the reaction of CH3CN with OH is consistent with the measurements.

  3. Pacemaker channels produce an instantaneous current.

    PubMed

    Proenza, Catherine; Angoli, Damiano; Agranovich, Eugene; Macri, Vincenzo; Accili, Eric A

    updating

    Spontaneous rhythmic activity in mammalian heart and brain depends on pacemaker currents (I(h)), which are produced by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Here, we report that the mouse HCN2 pacemaker channel isoform also produced a large instantaneous current (I(inst(HCN2))) in addition to the well characterized, slowly activating I(h). I(inst(HCN2)) was specific to expression of HCN2 on the plasma membrane and its amplitude was correlated with that of I(h). The two currents had similar reversal potentials, and both were modulated by changes in intracellular Cl(-) and cAMP. A mutation in the S4 domain of HCN2 (S306Q) decreased I(h) but did not alter I(inst(HCN2)), and instantaneous currents in cells expressing either wild type HCN2 or mutant S306Q channels were insensitive to block by Cs(+). Co-expression of HCN2 with the accessory subunit, MiRP1, decreased I(h) and increased I(inst(HCN2)), suggesting a mechanism for modulation of both currents in vivo. These data suggest that expression of HCN channels may be accompanied by a background conductance in native tissues and are consistent with at least two open states of HCN channels: I(inst(HCN2)) is produced by a Cs(+)-open state; hyperpolarization produces an additional Cs(+)-sensitive open state, which results in I(h).

  4. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units.

    PubMed

    Wang, Dongmei; Zhao, Tingting; Cao, Yu; Yao, Shuo; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    updating

    Two novel MMOFs, JLU-Liu5 and JLU-Liu6, are based on ternary building units and exhibit high adsorption selectivity for CO2, C2H6 and C3H8 over CH4, which is attributed to steric effects and host-guest interactions. These MMOFs are promising materials for gas adsorption and natural gas purification.

  5. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME II. APPENDICES A-I

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  6. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  7. Theory of pure rotational transitions in doubly degenerate torsional states of ethane

    NASA Technical Reports Server (NTRS)

    Rosenberg, A.; Susskind, J.

    updating

    It is shown that pure rotational transitions in doubly degenerate torsional states of C2H6 (with selection rules Delta K = 0, plus or minus 1) are made allowed by Coriolis interaction between torsion and dipole-allowed vibrations. Expressions are presented for integrated intensities from which strengths of lines in the millimeter region can be calculated.

  8. Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.

    PubMed

    Murshed, M Mangir; Kuhs, Werner F

    updating

    In situ formations of CH(4)-C(2)H(6) mixed gas hydrates were made using high flux neutron diffraction at 270 K and 5 MPa. For this purpose, a feed gas composition of CH(4) and C(2)H(6) (95 mol% CH(4)) was employed. The rates of transformation of spherical grains of deuterated ice Ih into hydrates were measured by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. Phase fractions of the crystalline constituents were obtained from Rietveld refinements. A concomitant formation of structure type I (sI) and structure type II (sII) hydrates were observed soon after the gas pressure was applied. The initial fast formation of sII hydrate reached its maximum volume and started declining very slowly. The formation of sI hydrate followed a sigmoid growth kinetics that slowed down due to diffusion limitation. This observation has been interpreted in terms of a kinetically favored nucleation of the sII hydrate along with a slow transformation into sI. Both powder diffraction and Raman spectroscopic results suggest that a C(2)H(6)-rich sII hydrate was formed at the early part of the clathration, which slowly decreased to approximately 3% after a reaction of 158 days as confirmed by synchrotron XRD. The final persistence of a small portion of sII hydrate points to a miscibility gap between CH(4)-rich sI and C(2)H(6)-rich sII hydrates.

  9. A two-dimensional study of ethane and propane oxidation in the troposphere

    NASA Technical Reports Server (NTRS)

    Kanakidou, M.; Valentin, K. M.; Crutzen, P. J.; Singh, H. B.

    updating

    The chemistry of ethane and propane is studied using a global two-dimensional 'zonally averaged' height- and latitude-dependent tropospheric model. The purpose of the study is to derive theoretical estimates of the seasonal and latitudinal distributions of a variety of intermediate organic compounds formed by the photochemical oxidation of C2H6 and C3H8. It is shown that C2H6 and C3H8 emitted at rates of 16 Tg C2H6/a and 23 Tg C3H8/a do not affect the overall photochemistry of the troposphere significantly. Major global effects on O3 and OH concentrations are suggested to be coming from the formation of peroxyacetyl nitrate by the interactions of NOx with other hydrocarbons with strong and spatially correlated anthropogenic or natural sources at the earth's surface. It is pointed out that attention should be given to organic nitrates produced by the oxidation of NMHC other than C2H6 and C3H8.

  10. 40 CFR updating - Nonmethane cutter penetration fractions.

    Code of Federal Regulations, 2014 CFR

    updating

    ... hydrocarbon standard or equal to the THC analyzer's span value. For CH4 analyzers with multiple ranges... single FID for THC and CH4 determination with an NMC that is calibrated with propane, C3H8, by bypassing... hydrocarbon standard and the C2H6 concentration typical of the peak total hydrocarbon (THC) concentration...

  11. Origin of methane-rich natural gas at the West Pacific convergent plate boundary.

    PubMed

    Sano, Yuji; Kinoshita, Naoya; Kagoshima, Takanori; Takahata, Naoto; Sakata, Susumu; Toki, Tomohiro; Kawagucci, Shinsuke; Waseda, Amane; Lan, Tefang; Wen, Hsinyi; Chen, Ai-Ti; Lee, Hsiaofen; Yang, Tsanyao F; Zheng, Guodong; Tomonaga, Yama; Roulleau, Emilie; Pinti, Daniele L

    updating

    Methane emission from the geosphere is generally characterized by a radiocarbon-free signature and might preserve information on the deep carbon cycle on Earth. Here we report a clear relationship between the origin of methane-rich natural gases and the geodynamic setting of the West Pacific convergent plate boundary. Natural gases in the frontal arc basin (South Kanto gas fields, Northeast Japan) show a typical microbial signature with light carbon isotopes, high CH 4 /C 2 H 6 and CH 4 / 3 He ratios. In the Akita-Niigata region - which corresponds to the slope stretching from the volcanic-arc to the back-arc -a thermogenic signature characterize the gases, with prevalence of heavy carbon isotopes, low CH 4 /C 2 H 6 and CH 4 / 3 He ratios. Natural gases from mud volcanoes in South Taiwan at the collision zone show heavy carbon isotopes, middle CH 4 /C 2 H 6 ratios and low CH 4 / 3 He ratios. On the other hand, those from the Tokara Islands situated on the volcanic front of Southwest Japan show the heaviest carbon isotopes, middle CH 4 /C 2 H 6 ratios and the lowest CH 4 / 3 He ratios. The observed geochemical signatures of natural gases are clearly explained by a mixing of microbial, thermogenic and abiotic methane. An increasing contribution of abiotic methane towards more tectonically active regions of the plate boundary is suggested.

  12. Variable (Tg, Ts) Measurements of Alkane Dissociative Sticking Coefficients

    NASA Astrophysics Data System (ADS)

    Valadez, Leticia; Dewitt, Kristy; Abbott, Heather; Kolasinski, Kurt; Harrision, Ian

    updating

    Dissociative sticking coefficients S(Tg, Ts) for CH4 and C2H6 on Pt(111) have been measured as a function of gas temperature (Tg) and surface temperature (Ts) using an effusive molecular beam. Microcanonical unimolecular rate theory (MURT) was employed to extract transition state characteristics [e.g., E0(CH4) = 52.5±3.5 kJ/mol-1 and E0(C2H6) = 26.5±3 kJ/mol-1]. MURT allows our S(Tg, Ts) values to be directly compared to other supersonic molecular beam and thermal equilibrium sticking measurements. The S(Tg, Ts) depend strongly on Ts, however, only for CH4 is a strong Tg dependence observed. The fairly weak Tg dependence for C2H6 suggests that vibrational mode specific behavior and/or molecular rotations play stronger roles in the dissociative chemisorption of C2H6 than they do for CH4. Interestingly, thermal S(Tg=Ts) predictions based on MURT modeling of our CH4/Pt(111) data are three orders of magnitude higher than recent thermal equilibrium measurements on supported Pt nanocrystallite catalysts [J. M. Wei, E. Iglesia, J. Phys. Chem. B 108, updating)].

  13. Effects of various reactive gas atmospheres on the properties of bio-oil using microwave pyrolysis

    USDA-ARS?s Scientific Manuscript database

    Fast pyrolysis of lignocellulosic biomass produces organic liquids (bio-oil), bio-char, water, and non-condensable gases. The non-condensable gas component typically contains syngas (H2, CO and CO2) as well as small hydrocarbons (CH4, C2H6, and C3H8). Tail Gas Reactive Pyrolysis (TGRP), a patent p...

  14. Spectral fingerprints of Earth-like planets around FGK stars.

    PubMed

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    updating

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  15. A Biomass-based Model to Estimate the Plausibility of Exoplanet Biosignature Gases

    NASA Astrophysics Data System (ADS)

    Seager, S.; Bains, W.; Hu, R.

    updating

    Biosignature gas detection is one of the ultimate future goals for exoplanet atmosphere studies. We have created a framework for linking biosignature gas detectability to biomass estimates, including atmospheric photochemistry and biological thermodynamics. The new framework is intended to liberate predictive atmosphere models from requiring fixed, Earth-like biosignature gas source fluxes. New biosignature gases can be considered with a check that the biomass estimate is physically plausible. We have validated the models on terrestrial production of NO, H2S, CH4, CH3Cl, and DMS. We have applied the models to propose NH3 as a biosignature gas on a "cold Haber World," a planet with a N2-H2 atmosphere, and to demonstrate why gases such as CH3Cl must have too large of a biomass to be a plausible biosignature gas on planets with Earth or early-Earth-like atmospheres orbiting a Sun-like star. To construct the biomass models, we developed a functional classification of biosignature gases, and found that gases (such as CH4, H2S, and N2O) produced from life that extracts energy from chemical potential energy gradients will always have false positives because geochemistry has the same gases to work with as life does, and gases (such as DMS and CH3Cl) produced for secondary metabolic reasons are far less likely to have false positives but because of their highly specialized origin are more likely to be produced in small quantities. The biomass model estimates are valid to one or two orders of magnitude; the goal is an independent approach to testing whether a biosignature gas is plausible rather than a precise quantification of atmospheric biosignature gases and their corresponding biomasses.

  16. Spectral Fingerprints of Earth-like Planets Around FGK Stars

    PubMed Central

    Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    updating

    Abstract We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions. Key Words: Habitability—Planetary atmospheres—Extrasolar terrestrial planets—Spectroscopic biosignatures. Astrobiology 13, 251–269. PMID:updating

  17. Microhydration Effects on the Intermediates of the SN2 Reacation of Iodide Anion with Methyl Iodine

    SciTech Connect

    Doi, Keisuke; Togano, Eijiro; Xantheas, Sotiris S.

    updating

    Reactions of halide anions with methyl halides (X- + CH3Y → XCH3 + Y-) are bimolecular nucleophilic substitution (SN2) reactions that have been well investigated in the last few decades.[1] Figure 1 shows typical potential energy surfaces (PESs) proposed for symmetric (X- + CH3X → XCH3 + X-) SN2 reactions along the reaction coordinate. In the gas phase, the PES has two minima corresponding to the stable X-(CH3X) complexes.[2] The PES is substantially distorted by the solvation. Since the negative charge is delocalized over the [X•••CH3•••X]- moiety at the transition state the stabilization energy gained by the solvation is smallermore » for the transition state than that for the (X- + CH3X) reactants or the X- (CH3X) complexes. In solution, a large potential barrier exists between the reactants and products. The rate constants of these reactions in protic solvents were reported to be a few orders of magnitude smaller than those in aprotic solvents; this trend was explained by the formation of solvation shells of protic molecules around the halide anions.[1,3] Morokuma has previously reported a theoretical study on the PES of the (Cl- + CH3Cl → ClCH3 + Cl-) SN2 reaction with a few H2O molecules. The attachment of H2O molecules to the Cl-(CH3Cl) reactive system produces metastable isomers, which affect the reaction mechanism.[4] Johnson and coworkers extensively investigated the structure and reactions of halide anion complexes in the gas phase using photodissociation spectroscopy.« less

  18. Kv7/KCNQ/M and HCN /h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells

    PubMed Central

    Gu, Ning; Vervaeke, Koen; Hu, Hua; Storm, Johan F

    updating

    In hippocampal pyramidal cells, a single action potential (AP) or a burst of APs is followed by a medium afterhyperpolarization (mAHP, lasting ∼0.1 s). The currents underlying the mAHP are considered to regulate excitability and cause early spike frequency adaptation, thus dampening the response to sustained excitatory input relative to responses to abrupt excitation. The mAHP was originally suggested to be primarily caused by M-channels (at depolarized potentials) and h-channels (at more negative potentials), but not SK channels. In recent reports, however, the mAHP was suggested to be generated mainly by SK channels or only by h-channels. We have now re-examined the mechanisms underlying the mAHP and early spike frequency adaptation in CA1 pyramidal cells by using sharp electrode and whole-cell recording in rat hippocampal slices. The specific M-channel blocker XE991 (10 μm) suppressed the mAHP following 1–5 APs evoked by current injection at −60 mV. XE991 also enhanced the excitability of the cell, i.e. increased the number of APs evoked by a constant depolarizing current pulse, reduced their rate of adaptation, enhanced the afterdepolarization and promoted bursting. Conversely, the M-channel opener retigabine reduced excitability. The h-channel blocker ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride; 10 μm) fully suppressed the mAHP at −80 mV, but had little effect at −60 mV, whereas XE991 did not measurably affect the mAHP at −80 mV. Likewise, ZD7288 had little or no effect on excitability or adaptation during current pulses injected from −60 mV, but changed the initial discharge during depolarizing pulses injected from −80 mV. In contrast to previous reports, we found that blockade of Ca2+-activated K+ channels of the SK/KCa type by apamin (100–400 nm) failed to affect the mAHP or adaptation. A computational model of a CA1 pyramidal cell predicted that M- and h-channels will generate mAHPs in a voltage-dependent manner, as indicated by the experiments. We conclude that M- and h-channels generate the somatic mAHP in hippocampal pyramidal cells, with little or no net contribution from SK channels. PMID:updating

  19. Photochemistry, mixing and transport in Jupiter's stratosphere constrained by Cassini

    NASA Astrophysics Data System (ADS)

    Hue, V.; Hersant, F.; Cavalié, T.; Dobrijevic, M.; Sinclair, J. A.

    updating

    In this work, we aim at constraining the diffusive and advective transport processes in Jupiter's stratosphere, using Cassini/CIRS observations published by Nixon et al. (2007,2010). The Cassini-Huygens flyby of Jupiter on December 2000 provided the highest spatially resolved IR observations of Jupiter so far, with the CIRS instrument. The IR spectrum contains the fingerprints of several atmospheric constituents and allows probing the tropospheric and stratospheric composition. In particular, the abundances of C2H2 and C2H6, the main compounds produced by methane photochemistry, can be retrieved as a function of latitude in the pressure range at which CIRS is sensitive to. CIRS observations suggest a very different meridional distribution for these two species. This is difficult to reconcile with their photochemical histories, which are thought to be tightly coupled to the methane photolysis. While the overall abundance of C2H2 decreases with latitude, C2H6 becomes more abundant at high latitudes. In this work, a new 2D (latitude-altitude) seasonal photochemical model of Jupiter is developed. The model is used to investigate whether the addition of stratospheric transport processes, such as meridional diffusion and advection, are able to explain the latitudinal behavior of C2H2 and C2H6. We find that the C2H2 observations are fairly well reproduced without meridional diffusion. Adding meridional diffusion to the model provides an improved agreement with the C2H6 observations by flattening its meridional distribution, at the cost of a degradation of the fit to the C2H2 distribution. However, meridional diffusion alone cannot produce the observed increase with latitude of the C2H6 abundance. When adding 2D advective transport between roughly 30 mbar and 0.01 mbar, with upwelling winds at the equator and downwelling winds at high latitudes, we can, for the first time, reproduce the C2H6 abundance increase with latitude. In parallel, the fit to the C2H2 distribution is

  20. Northern and Southern Hemisphere Ground-Based Infrared Spectroscopic Measurements of Tropospheric Carbon Monoxide and Ethane

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Jones, Nicholas B.; Connor, Brian J.; Logan, Jennifer A.; Pougatchev, Nikita; Goldman, Aaron; Murcray, Frank J.; Stephen, Thomas M.; Pine, Alan S.; Zander, Rodolphe;

    updating

    Time series of CO and C2H6 measurements have been derived from high resolution infrared solar spectra recorded in Lauder, New Zealand (45.0 deg S, 169.7 deg E, altitude 0.37 km) and at the U. S. National Solar Observatory (31.90 deg N, 111.6 deg W, altitude 2.09 km) on Kitt Peak. Lauder observations were obtained between July 1993 and November 1997 while the Kitt Peak measurements were recorded between May 1977 and December 1997. Both databases were analyzed with spectroscopic parameters that included significant improvements for C2H6 relative to previous studies. Target CO and C2H6 lines were selected to achieve similar vertical samplings based on averaging kernels. These calculations show that partial columns from layers extending from the surface to the mean tropopause and from the mean tropopause to 100 km are nearly independent. Retrievals based on a semiempirical application of the Rodgers optimal estimation technique are reported for the lower layer, which has a broad maximum in sensitivity in the upper troposphere. The Lauder CO and C2H6 partial columns exhibit highly asymmetrical seasonal cycles with minima in austral autumn and sharp peaks in austral spring. The spring maxima are the result of tropical biomass burning emissions followed by deep convective vertical transport to the upper troposphere and long-range horizontal transport. Significant year-to-year variations are observed for both CO and C2H6, but the measured trends, (+0.37 +/- 0.57)%/ yr and (-0.64 +/- 0.79)%/ yr, 1 sigma, respectively, indicate no significant long-term changes. The Kitt Peak data also exhibit CO and C2H6 seasonal variations in the lower layer with trends equal to (-0.27 +/- 0.17)%/ yr and (-1.20 +/- 0.35)%/ yr, 1 sigma, respectively. Hence, a decrease in the Kitt Peak tropospheric C2H6 column has been detected, though the CO trend is not significant. Both measurement sets are compared with previous observations, reported trends, and three-dimensional model calculations.

  1. A potential nuclear magnetic resonance imaging approach for noncontact temperature measurement

    NASA Technical Reports Server (NTRS)

    Manatt, Stanley L.

    updating

    It is proposed that in a nuclear magnetic resonance (NMR) imaging experiment that it should be possible to measure temperature through an extended volume. The basis for such a measurement would depend upon sensing a temperature dependent on NMR parameter in an inert, volatile molecule (or fluid) filling the volume of interest. Exploratory work suggest that one suitable candidate for such a purpose might be CH3Cl. Possible parameters, other inert gases and feasible measurement schemes that might provide such temperature measurement are discussed.

  2. Analysis of Borderline Substitution/Electron Transfer Pathways from Direct ab initio MD Simulations

    SciTech Connect

    Yamataka, H; Aida, M A.; Dupuis, Michel

    Ab initio molecular dynamics simulations were carried out for the borderline reaction pathways in the reaction of CH2O?- with CH3Cl. The simulations reveal distinctive features of three types of mechanisms passing through the SN2-like transition state (TS): (i) a direct formation of SN2 products, (ii) a direct formation of ET products, and (iii) a 2-step formation of ET products via the SN2 valley. The direct formation of the ET product through the SN2-like TS appears to be more favorable at higher temperatures. The 2-step process depends on the amount of energy that goes into the C-C stretching mode.

  3. Variational Flooding Study of a SN2 Reaction.

    PubMed

    Piccini, GiovanniMaria; McCarty, James J; Valsson, Omar; Parrinello, Michele

    updating

    We have studied the reaction dynamics of a prototypical organic reaction using a variationally optimized truncated bias to accelerate transitions between educt and product reactant states. The asymmetric S N 2 nucleophilic substitution reaction of fluoromethane and chloromethane CH 3 F + Cl - ⇌ CH 3 Cl + F - is considered, and many independent biased molecular dynamics simulations have been performed at 600, 900, and 1200 K, collecting several hundred transitions at each temperature. The transition times and relative rate constants have been obtained for both reaction directions. The activation energies extracted from an Arrhenius plot compare well with standard static calculations.

  4. A model SN2 reaction ‘on water’ does not show rate enhancement

    NASA Astrophysics Data System (ADS)

    Nelson, Katherine V.; Benjamin, Ilan

    updating

    Molecular dynamics calculations of the benchmark nucleophilic substitution reaction (SN2) Cl- + CH3Cl are carried out at the water liquid/vapor interface. The reaction free energy profile and the activation free energy are determined as a function of the reactants' location normal to the surface. The activation free energy remains almost constant relative to that in bulk water, despite the fact that the barrier is expected to significantly decrease as the reaction is carried out near the vapor phase. We show that this is due to the combined effects of a clustering of water molecules around the nucleophile and a relatively weak hydration of the transition state.

  5. Hydrogen cyanide in the headspace of oral fluid and in mouth-exhaled breath.

    PubMed

    Chen, W; Metsälä, M; Vaittinen, O; Halonen, L

    updating

    Mouth-exhaled hydrogen cyanide (HCN) concentrations have previously been reported to originate from the oral cavity. However, a direct correlation between the HCN concentration in oral fluid and in mouth-exhaled breath has not been explicitly shown. In this study, we set up a new methodology to simultaneously measure HCN in the headspace of oral fluid and in mouth-exhaled breath. Our results show that there is a statistically significant correlation between stimulated oral fluid HCN and mouth-exhaled HCN (rs = 0.76, p HCN. Furthermore, we observe that after the application of an oral disinfectant, both the stimulated oral fluid and mouth-exhaled HCN concentrations decrease. This implies that HCN production in the oral cavity is related to the bacterial and/or enzymatic activity.

  6. Fluid inclusion volatile analysis by gas chromatography with photoionization micro-thermal conductivity detectors: Applications to magmatic MoS 2 and other H 2O-CO 2 and H 2O-CH 4 fluids

    NASA Astrophysics Data System (ADS)

    Bray, C. J.; Spooner, E. T. C.

    updating

    Eighteen fluid inclusion volatile peaks have been detected and identified from 1-2 g samples (quartz) by gas chromatography using heated (~105°C) on-line crushing, helium carrier gas, a single porous polymer column (HayeSep R; 10' × 1/8″: 100/120#; Ni alloy tubing), two temperature programme conditions for separate sample aliquots, micro-thermal conductivity (TCD) and photoionization detectors (PID; 11.7 eV lamp), and off-line digital peak processing. In order of retention time these volatile peaks are: N 2, Ar, CO, CH 4, CO 2, C 2H 4, C 2H 6, C 2H 2, COS, C 3H 6, C 3H 8, C 3H 4 (propyne), H 2O (22.7 min at 80°C), SO 2, ± iso- C4H10 ± C4H8 (1-butene) ± CH3SH, C 4H 8 (iso-butylene), (?) C 4H 6 (1,3 butadiene) and ± n- C4H10 ± C4H8 (trans-2-butene) (80 and -70°C temperature programme conditions combined). H 2O is analysed directly. O 2 can be analysed cryogenically between N 2 and Ar, but has not been detected in natural samples to date in this study. H 2S, SO 2, NH 3, HCl, HCN, and H 2 ca nnot be analysed at present. Blanks determined by crushing heat-treated Brazilian quartz (800-900°C/4 h) are zero for 80°C temperature programme conditions, except for a large, unidentified peak at ~64 min, but contain H 2O, CO 2, and some low molecular weight hydrocarbons at -70°C temperature conditions due to cryogenic accumulation from the carrier gas and subsequent elution. TCD detection limits are ~30 ppm molar in inclusions; PID detection limits are ~ 1 ppm molar in inclusions and lower for unsaturated hydrocarbons (e.g., ~0.2 ppm for C 2H 4; ~ 1 ppb for C 2H 2; ~0.3 ppb for C 3H 6). Precisions (1σ) are ~ ±1-2% and ~ ± 13% for H 2O in terms of total moles detected; the latter value is equivalent to ±0.6 mol% at the 95 mol% H 2O level. Major fluid inclusion volatile species have been successfully analysed on a ~50 mg fluid inclusion section chip (~7 mm × ~10 mm × ~100 μm). Initial inclusion volatile analyses of fluids of interpreted magmatic origin from

  7. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

    DOE PAGES

    Ye, Weilin; Li, Chunguang; Zheng, Chuantao; ...

    updating

    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH 4) and ethane (C 2H 6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0–3001.5 cm –1 was used to simultaneously target two absorption lines, C 2H 6 at 2996.88 cm –1 and CH 4 at 2999.06 cm –1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH 4 and 1.86 ppbv for Cmore » 2H 6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH 4 and C 2H 6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH 4 and 2.4 ppbv for C 2H 6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH 4 and C 2H 6 were conducted. As a result, the reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.« less

  8. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

    SciTech Connect

    Ye, Weilin; Li, Chunguang; Zheng, Chuantao

    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH 4) and ethane (C 2H 6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0–3001.5 cm –1 was used to simultaneously target two absorption lines, C 2H 6 at 2996.88 cm –1 and CH 4 at 2999.06 cm –1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH 4 and 1.86 ppbv for Cmore » 2H 6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH 4 and C 2H 6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH 4 and 2.4 ppbv for C 2H 6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH 4 and C 2H 6 were conducted. As a result, the reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.« less

  9. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    PubMed

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    updating

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  10. Comparative Shock-Tube Study of Autoignition and Plasma-Assisted Ignition of C2-Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kosarev, Ilya; Kindysheva, Svetlana; Plastinin, Eugeny; Aleksandrov, Nikolay; Starikovskiy, Andrey

    updating

    The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane Using a shock tube with a discharge cell, ignition delay time was measured in a lean (φ = 0.5) C2H6:O2:Ar mixture and in lean (φ = 0.5) and stoichiometric C2H4:O2:Ar mixtures with a high-voltage nanosecond discharge and without it. The measured results were compared with the measurements made previously with the same setup for C2H6-, C2H5OH- and C2H2-containing mixtures. It was shown that the effect of plasma on ignition is almost the same for C2H6, C2H4 and C2H5OH. The reduction in time is smaller for C2H2, the fuel that is well ignited even without the discharge. Autoignition delay time was independent of the stoichiometric ratio for C2H6 and C2H4, whereas this time in stoichiometric C2H2- and C2H5OH-containing mixtures was noticeably shorter than that in the lean mixtures. Ignition after the discharge was not affected by a change in the stoichiometric ratio for C2H2 and C2H4, whereas the plasma-assisted ignition delay time for C2H6 and C2H5OH decreased as the equivalence ratio changed from 1 to 0.5. Ignition delay time was calculated in C2-hydrocarbon-containing mixtures under study by simulating separately discharge and ignition processes. Good agreement was obtained between new measurements and calculated ignition delay times.

  11. Experimental studies on equilibrium adsorption isosteres and determination of the thermodynamic quantities of polar media on alumina Al2O3

    NASA Astrophysics Data System (ADS)

    Yonova, Albena

    updating

    The present work is a revieif of theoretical and experimental study on the adsorption performance of the adsorbent Alumina (Al2O3) used in the adsorption system. An experimental investigation on the equilibrium adsorption isosteres at low pressure (C2H6O2 is carried out. The isovolume measurement method is adopted in the test setup to directly measure the saturated vapor pressures of working pairs at vapor-liquid equilibrium (dG=0 and dμi=0). Quantity adsorbed is determined from pressure, volume and temperature using gas law. The isosteric heat of adsorption is calculated from the slope of the plot of lnP versus 1/T different amounts of adsorbate onto adsorbent as follows: 0,01 vol% Al2O3/H2O; 0,03 vol% Al2O3/H2O; 0,1 vol% Al2O3/H2O; 0,01 vol% Al2O3/C2H6O2; 0,03 vol% Al2O3/C2H6O2; 0,1 vol% Al2O3/C2H6O2. This study shows that adsorption working pair Al2O3 C2H6O2 has better adsorption performances than those of the A2O3/H2O. Surface acidity! is a most important property! far both adsorption and catalysis and therefore is examined structure of active sites of alumina surface. Thermodynamic parameters such as isosteric heat of adsorption, isosteric enthalpy and entropy of adsorption are critical design variables in estimating the performance and predicting the mechanism of an adsorption process and are also one of the basic requirements for the characterization and optimization of an adsorption process

  12. S-graphite slit pore: A superior selective adsorbent for light hydrocarbons

    NASA Astrophysics Data System (ADS)

    Xue, Qingzhong; Li, Xiaofang; Chang, Xiao; Ling, Cuicui; Zhu, Lei; Xing, Wei

    updating

    Separation of light hydrocarbons (C1-C3) is extremely significant since these are alternative energy resources and raw materials in the industrial process. In this work, we have examined the performance of S-graphite slit pore in selective separation of CH4 over C2H2, C2H4, C2H6, C3H6 and C3H8 using Grand Canonical Monte Carlo calculations. Generally, its C3/C1 selectivity is higher than C2/C1 selectivity. Exactly, at 300 K and 1 bar, the selectivity is around 13, 17 and 18 for CH4/C2H2, CH4/C2H4 and CH4/C2H6 while it is about 63 and 70 for CH4/C3H6 and CH4/C3H8, respectively. Importantly, we have found that the optimum pore size is 0.65 nm for CH4/C2H2 and CH4/C2H4, 0.75 nm for CH4/C2H6, which is smaller than that (1.0 nm) for CH4/C3H6 and CH4/C3H8. Besides, density functional theory calculations demonstrate the remarkable selective separation of CH4 over C2H2, C2H4, C2H6, C3H6 and C3H8 of S-graphite slit pore is attributed to its stronger interactions with C2H2, C2H4, C2H6, C3H6 and C3H8 molecule than CH4 molecule due to the larger polarizability of C2 and C3 molecules, which also manifests that S-graphite slit pore is an extremely promising candidate for separating light hydrocarbons.

  13. Experimental and theoretical simulations of Titan's VUV photochemistry

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Carrasco, N.; Pernot, P.

    updating

    A new reactor, named APSIS (Atmospheric Photochemistry SImulated by Synchrotron), has been designed to simulate planetary atmospheric photochemistry [Peng et al. JGR-E. 2013, 118, 778]. We report here a study focusing on Titan's upper atmosphere. A nitrogen-methane gas flow was irradiated by a continuous 60-350 nm VUV beam provided by the DISCO line at SOLEIL synchrotron radiation facility. The production of C2-C4 hydrocarbons as well as several nitriles (HCN, CH3 CN and C2N2) was detected by in situ mass spectrometry, in agreement with Cassini's INMS observations at Titan, and ex situ GC-MS of a cryogenic experiment. We compared the mass spectra with those obtained by a plasma experiment [Carrasco et al. Icarus. 2012, 219, 230] and with another synchrotron-based experiment [Imanaka and Smith. PNAS. 2010, 107, 12423], and with the in situ measurements of the INMS instrument onboard Cassini probing the neutral content of Titan's upper atmosphere. In spite of lower photochemical production efficiency and different environmental conditions, the APSIS reactor seems to simulate Titan's neutral composition rather well. To interpret these experimental data, we developed a fully coupled ion-neutral photochemical model of the reactor, with uncertainty management, based on the neutral model of Hébrard et al. [J. Photochem. Photobiol. A. 2006, 7, 211], the model of ion chemistry of Plessis et al. [J. Chem. Phys. 2010, 133, 134110], and a new representation of photolysis cross-sections and branching ratios [Gans et al. Icarus. 2013, 223, 330]. Compared to the measurements, the production in Cn blocks is in good agreement. Ion chemistry and the full dissociative recombination scheme have been demonstrated to be important features of the model. The photolysis was confirmed to be globally influential by sensivity analysis. We observed the importance of the addition of small (C1 or C2) units in molecular growth, as well as 3 growth families, promoted by C2H2, C2H4 and C2H5/C2H6

  14. Titan's Aerosol and Stratospheric Ice Opacities Between 18 and 500 Micrometers: Vertical and Spectral Characteristics from Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie M.; Samuelson, Robert E.

    updating

    Vertical distributions and spectral characteristics of Titan's photochemical aerosol and stratospheric ices are determined between 20 and 560 per centimeter (500-18 micrometers) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15 N, 15 S, and 58 S, where accurate temperature profiles can be independently determined. In addition, estimates of aerosol and ice abundances at 62 N relative to those at 15 S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are approximately 3 times more abundant at 62 N than at 15 S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at approximately 160 per centimeter, appear to be located over a narrow altitude range in the stratosphere centered at approximately 90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58 S. There is some evidence of a second ice cloud layer at approximately 60 km altitude at 58 S associated with an emission feature at approximately 80 per centimeter. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan. Unlike the highly restricted range of altitudes (50-100 km) associated with organic condensate clouds, Titan's photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15 N and 58 S latitude. The ratio of aerosol-to-gas scale heights range from 1.3-2.4 at about 160 km to 1.1-1.4 at 300 km, although there is considerable variability with latitude, The aerosol exhibits a very broad emission feature peaking at approximately 140 per centimeter. Due to its extreme breadth and low wavenumber, we speculate that this feature may

  15. Photochemistry of Triton's atmosphere and ionosphere.

    PubMed

    Krasnopolsky, V A; Cruikshank, D P

    updating

    The photochemistry of 32 neutral and 21 ion species in Triton's atmosphere is considered. Parent species N2, CH4, and CO (with a mixing ratio of 3 x 10(-4) in our basic model) sublime from the ice with rates of 40, 208, and 0.3 g/cm2/b.y., respectively. Chemistry below 50 km is driven mostly by photolysis of methane by the solar and interstellar medium Lyman-alpha photons, producing hydrocarbons C2H4, C2H6, and C2H2 which form haze particles with precipitation rates of 135, 28, and 1.3 g/cm2/b.y., respectively. Some processes are discussed which increase the production of HCN (by an order of magnitude to a value of 29 g/cm2/b.y.) and involve indirect photolysis of N2 by neutrals. Reanalysis of the measured methane profiles gives an eddy diffusion coefficient K = 4 x 10(3) cm2/s above the tropopause and a more accurate methane number density near the surface, (3.1 +/- 0.8) x 10(11) cm-3. Chemistry above 200 km is driven by the solar EUV radiation (lambda

  16. Comet C/2012 S1 (ISON)'s carbon-rich and micron-size-dominated coma dust

    NASA Astrophysics Data System (ADS)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; Lisse, C.; de Pater, I.; Gehrz, R.; Kolokolova, L.

    updating

    (NEAT)[11] had smaller and highly porous grains, whereas C/2007 N4 (Lulin)[12] and C/2006 P1 (McNaught)[13] had larger and compact porous grains. Radial transport to comet-forming disk distances (≥ 20 au) is easier for smaller grains than for larger grains (≤ 1 μ m vs.˜20 μ m-like Stardust terminal particles) [14]. Perhaps Comet ISON formed either earlier in disk evolution whereby larger grains did not have the time to be transported to distances beyond Neptune, or the comet formed so far out in the disk that larger grains did not traverse such large radial distances. The high carbon-content of ISON's refractory dust appears to be complimented by the presence of limited-lifetime organic (CHON-like) grain materials: preliminary analyses of near-IR and high-resolution optical spectra indicate that gas-phase daughter molecules C_2, CN, and CH were more abundant than their parent molecules (HCN, C_2H_2, C_2H_6, measured in the near-IR) [15]. Dust composition as well as grain size distribution parameters (slope, peak grain size, and porosity) give clues to comet origins [16,17].

  17. Photochemistry of Triton's Atmosphere and Ionosphere

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, Vladimir A.; Cruikshank, Dale P.

    updating

    The photochemistry of 32 neutral and 21 ion species in Triton's atmosphere is considered. Parent species N2, CH4, and CO (with a mixing ratio of 3 x 10(exp -4) in our basic model) sublime from the ice with rates of 40, 208, and 0.3 g/sq cm/b.y., respectively. Chemistry below 50 km is driven mostly by photolysis of methane by the solar and interstellar medium Lyman-alpha photons, producing hydrocarbons C2H4, C2H6, and C2H2 which form haze particles with precipitation rates of 135, 28, and 1.3 g/sq cm/b.y., respectively. Some processes are discussed which increase the production of HCN (by an order of magnitude to a value of 29 g/sq cm/b.y.) and involve indirect photolysis of N2 by neutrals. Reanalysis of the measured methane profiles gives an eddy diffusion coefficient K = 4 x 10(exp 3)sq cm/s above the tropopause and a more accurate methane number density near the surface, (3.1 +/- 0.8)x IO(exp 11)/cu cm. Chemistry above 200 km is driven by the solar EUV radiation (lambda less than 1000 A) and by precipitation of magnetospheric electrons with a total energy input of 10(exp 8) W (based on thermal balance calculations). The most abundant photochemical species are N, H2, H, 0, and C. They escape with the total rates of 7.7 x 10(exp 24)/ s, 4.5 x 10(exp 25)/s, 2.4 x 10(exp 25)/s, 4.4 x 10(exp 22)/s, and 1.1 x 10(exp 24), respectively. Atomic species are transported to a region of 50-200 km and drive the chemistry there. Ionospheric chemistry explains the formation of an E region at 150-240 km with HCO(+) as a major ion, and of an F region above 240 km with a peak at 320 km and C(+) as a major ion. The ionosphere above 500 km consists of almost equal densities of C(+) and N(+) ions. The model profiles agree with the measured atomic nitrogen and electron density profiles. A number of other models with varying rate coefficients of some reactions, differing properties of the haze particles (chemically passive or active), etc., were developed. These models show that there

  18. The Chemistry of Pluto and its Satellites

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    updating

    Pluto's bulk composition and the composition of the surface layers hold clues to the origin and evolution of a number of other Solar System bodies of comparable size in the region beyond Neptune. The July 14, 2015 flyby of the Pluto system with the New Horizons spacecraft afforded the opportunity to corroborate and greatly improve discoveries about the planet and its satellites derived Earth-based studies. It also revealed extraordinary details of the surface and atmosphere of Pluto, as well as the geology and composition of Charon and two smaller satellites. With a mean density of 1.86 g/sq cm, the bulk composition of Pluto is about two-thirds anhydrous solar composition rocky material and one-third volatiles (primarily H2O in liquid and solid states) by mass, the surface is a veneer of ices dominated by N2, with smaller amounts of CH4 and CO, as well as limited exposures of H2O ice (considered to be "bedrock"). N2, CH4, and CO occur as solid solutions at temperature-dependent mutual concentrations, each component being soluble in the others. Frozen C2H6 as a minor component has also been identified. Sublimation and recondensation of N2, CH4, and CO over seasonal (248 y) and Milankovich-type megaseasons (approx. 3 My) result in the redistribution of these ices over time and with latitude control. Solid N2 is found in glaciers originating in higher elevations and flowing at the present time into a basin structure larger than the State of Texas, forming a convecting lens of N2 that overturns on a timescale of order 10 My. The varied colors of Pluto's landscape arise from the energetic processing of the surface ices in processes that break the simple molecules and reassemble complex organic structures consisting of groups of aromatic rings connected by aliphatic chains. When synthesized in the laboratory by UV or electron irradiation of a Pluto mix of ice, this material, called tholin, has colors closely similar to Pluto. The Pluto ice tholin analog contains

  19. Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury's north polar region

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Paige, D. A.; Siegler, M. A.; Harju, E. R.; Schriver, D.; Johnson, R. E.; Travnicek, P.

    updating

    Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in updating indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury's north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen organics that can persist over long geologic timescales and evolve under the influence of the Mercury space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles and induce ice chemistry. Mercury's magnetic field contains magnetic cusps, areas of focused field lines containing trapped magnetospheric charged particles that will be funneled onto the Mercury surface at very high latitudes. This magnetic highway will act to direct energetic protons, ions and electrons directly onto the polar ices. The radiation processing of the ices could convert them into higher-order organics and dark refractory materials whose spectral characteristics are consistent with low-albedo materials observed by MESSENGER Laser Altimeter (MLA) and RADAR instruments. Galactic cosmic rays (GCR), scattered UV light and solar energetic particles (SEP) also supply energy for ice processing. Cometary impacts will deposit H2O, CH4, CO2 and NH3 raw materials onto Mercury's surface which will migrate to the poles and be converted to more complex Csbnd Hsbnd Nsbnd Osbnd S-containing molecules such as aldehydes, amines, alcohols, cyanates, ketones, hydroxides, carbon oxides and suboxides, organic acids and others. Based on lab experiments in the literature, possible specific compounds produced may be: H2CO, HCOOH, CH3OH, HCO, H2CO3, CH3C(O)CH3, C2O, CxO, C3O2, CxOy, CH3CHO, CH3OCH2CH2OCH3, C2H6, CxHy, NO2, HNO2, HNO3, NH2OH, HNO, N2H2, N3, HCN, Na2O, Na

  20. Protostellar and cometary detections of organohalogens

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Öberg, Karin I.; Jørgensen, Jes K.; Altwegg, Kathrin; Calcutt, Hannah; Müller, Holger S. P.; Rubin, Martin; van der Wiel, Matthijs H. D.; Bjerkeli, Per; Bourke, Tyler L.; Coutens, Audrey; van Dishoeck, Ewine F.; Drozdovskaya, Maria N.; Garrod, Robin T.; Ligterink, Niels F. W.; Persson, Magnus V.; Wampfler, Susanne F.; Rosina Team

    updating

    Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes1. Consequently, they have been proposed as biomarkers in the search for life on exoplanets2. Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain3,4. Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS updating, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.

  1. Ab Initio Molecular Dynamics Studies on Substitution vs. Electron Transfer Reactions of Substituted Ketyl Radical Anions with Chloroalkanes: How Do the Two Products Form in a Borderline Mechanism?

    SciTech Connect

    Yamataka, H.; Aida, Misako; Dupuis, Michel

    We present a qualitative analysis, based on ab initio molecular dynamics (MD) calculations, of the SN2/ET mechanistic spectrum for three reactions: (1) HC(CN)=O.- + CH3Cl, (2) HC(CN)=O.- + (CH3)2CHCl, and (3) H2C=O.- + CH3Cl, passing through their SN2-like transition states. The finite temperature (298 K) direct-MD simulations indicate that the trajectories for reaction 1 appear to have a propensity towards SN2 products, the propensity for trajectories for reaction 2 seems to be towards ET products, whereas trajectories for reaction 3 appear to show no particular propensity towards either ET or SN2 products. The mechanistic diversity is consistent with the electronmore » donating ability of the ketyl species and steric bulkiness of chloroalkanes. We find that the trajectories have characteristics that reflect strongly the types of process (SN2 trajectories in reactions 1 and 3 vs. ET trajectories in reactions 2 and 3). Trajectories that lead to SN2 products are simple with C-C bond formation and C-Cl bond breaking essentially completed within 50 fs. By contrast, trajectories leading to ET products are more complex with a sudden electron reorganization taking place within 15 - 30 fs and the major bonding changes and electron and spin reorganizations completed after 250 fs.« less

  2. Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria

    PubMed Central

    Nadalig, Thierry; Greule, Markus; Bringel, Françoise; Vuilleumier, Stéphane; Keppler, Frank

    updating

    Chloromethane (CH3Cl) is a widely studied volatile halocarbon involved in the destruction of ozone in the stratosphere. Nevertheless, its global budget still remains debated. Stable isotope analysis is a powerful tool to constrain fluxes of chloromethane between various environmental compartments which involve a multiplicity of sources and sinks, and both biotic and abiotic processes. In this study, we measured hydrogen and carbon isotope fractionation of the remaining untransformed chloromethane following its degradation by methylotrophic bacterial strains Methylobacterium extorquens CM4 and Hyphomicrobium sp. MC1, which belong to different genera but both use the cmu pathway, the only pathway for bacterial degradation of chloromethane characterized so far. Hydrogen isotope fractionation for degradation of chloromethane was determined for the first time, and yielded enrichment factors (ε) of −29‰ and −27‰ for strains CM4 and MC1, respectively. In agreement with previous studies, enrichment in 13C of untransformed CH3Cl was also observed, and similar isotope enrichment factors (ε) of −41‰ and −38‰ were obtained for degradation of chloromethane by strains CM4 and MC1, respectively. These combined hydrogen and carbon isotopic data for bacterial degradation of chloromethane will contribute to refine models of the global atmospheric budget of chloromethane. PMID:updating

  3. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass.

    PubMed

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid; Wu, Hao; Glarborg, Peter; Pelucchi, Matteo; Faravelli, Tiziano; Marshall, Paul

    updating

    Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride. In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4 for which data are scarce were studied by ab initio methods. The model was used to analyze the fate of methyl chloride in gasification processes. The results indicate that CH3Cl emissions will be negligible for most gasification technologies, but could be a concern for fluidized bed gasifiers, in particular in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale.

  4. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field approach

    NASA Astrophysics Data System (ADS)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    updating

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  5. Newly proposed proton-abstraction roundabout with backside attack mechanism for the SN2 reaction at the nitrogen center in F- + NH2Cl.

    PubMed

    Li, Yongfang; Wang, Dunyou

    updating

    Recent studies have improved our understanding of the mechanism and dynamics of the bimolecular nucleophilic substitution (S N 2) reaction at the carbon center. Nonetheless, the S N 2 reaction at the nitrogen center has received scarce attention and is less understood. Herein, we propose a new reaction mechanism for the S N 2 reaction at the nitrogen center in the F - + NH 2 Cl reaction using ab initio molecular dynamics calculations. The newly proposed mechanism involves the rotation of NHCl with one proton of NH 2 Cl abstracted by the nucleophile, followed by the classical backside-attack process. The double-inversion mechanism revealed recently for the S N 2 reaction at the carbon center is also observed for the title reaction at the nitrogen center. In contrast to the F - + CH 3 Cl reaction with a proton abstraction-induced first inversion transition state, the F - + NH 2 Cl reaction is a hydrogen bond-induced inversion. This newly proposed reaction mechanism opens a reaction channel to avoid the proton abstraction mechanism at low collision energy. The double-inversion mechanism of the title reaction with a negative first-inversion transition relative to the energy of the reactants is expected to have larger contribution to the reaction rate than the F - + CH 3 Cl reaction with a positive first-inversion transition state.

  6. Indirect dynamics in nguyenquanghuy@gmail.com: insight into the influence of central atoms.

    PubMed

    Liu, Xu; Zhao, Chenyang; Yang, Li; Zhang, Jiaxu; Sun, Rui

    updating

    Central atoms have a significant influence on the reaction kinetics and dynamics of nucleophilic substitution (S N 2). Herein, atomistic dynamics of a prototype S N nguyenquanghuy@gmail.com reaction F - + NH 2 Cl is uncovered employing direct dynamics simulations that show strikingly distinct features from those determined for a S N nguyenquanghuy@gmail.com congener F - + CH 3 Cl. Indirect scattering is found to prevail, which proceeds predominantly through a hydrogen-bonded F - -HNHCl complex in the reactant entrance channel. This unexpected finding of a pronounced contribution of indirect reaction dynamics, even at a high collision energy, is in strong contrast to a general evolution from indirect to direct dynamics with enhanced energy that characterizes S N nguyenquanghuy@gmail.com This result suggests that the relative importance of different atomic-level mechanisms may depend essentially on the interaction potential of reactive encounters and the coupling between inter- and intramolecular modes of the pre-reaction complex. For F - + NH 2 Cl the proton transfer pathway is less competitive than S N 2. A remarkable finding is that the more favorable energetics for NH 2 Cl proton transfer, as compared to that for CH 3 Cl, does not manifest itself in the reaction dynamics. The present work sheds light on the underlying reaction dynamics of S N nguyenquanghuy@gmail.com, which remain largely unclear compared to well-studied S N nguyenquanghuy@gmail.com

  7. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: multi-center molecular Ornstein-Zernike self-consistent field approach.

    PubMed

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    updating

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  8. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy

    PubMed Central

    Chen, Wen; Roslund, Kajsa; Fogarty, Christopher L.; Pussinen, Pirkko J.; Halonen, Lauri; Groop, Per-Henrik; Metsälä, Markus; Lehto, Markku

    updating

    Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (0.9–10.9 ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria. PMID:updating

  9. Different roles for the cyclic nucleotide binding domain and amino terminus in assembly and expression of hyperpolarization-activated, cyclic nucleotide-gated channels.

    PubMed

    Proenza, Catherine; Tran, Neil; Angoli, Damiano; Zahynacz, Kristin; Balcar, Petr; Accili, Eric A

    updating

    In mammalian heart and brain, pacemaker currents are produced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, which probably exist as heteromeric assemblies of different subunit isoforms. To investigate the molecular domains that participate in assembly and membrane trafficking of HCN channels, we have used the yeast two-hybrid system, patch clamp electrophysiology, and confocal microscopy. We show here that the N termini of the HCN1 and HCN2 isoforms interacted and were essential for expression of functional homo- or heteromeric channels on the plasma membrane of Chinese hamster ovary cells. We also show that the cyclic nucleotide binding domain (CNBD) of HCN2 was required for the expression of functional homomeric channels. This expression was dependent on a 12-amino acid domain corresponding to the B-helix in the CNBD of the catabolite activator protein. However, co-expression with HCN1 of an HCN2 deletion mutant lacking the CNBD rescued surface immunofluorescence and currents, indicating that a CNBD need not be present in each subunit of a heteromeric HCN channel. Furthermore, neither CNBDs nor other COOH-terminal domains of HCN1 and HCN2 interacted in yeast two-hybrid assays. Thus, interaction between NH(2)-terminal domains is important for HCN subunit assembly, whereas the CNBD is important for functional expression, but its absence from some subunits will still allow for the assembly of functional channels.

  10. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Roslund, Kajsa; Fogarty, Christopher L.; Pussinen, Pirkko J.; Halonen, Lauri; Groop, Per-Henrik; Metsälä, Markus; Lehto, Markku

    updating

    Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (updating ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria.

  11. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy.

    PubMed

    Chen, Wen; Roslund, Kajsa; Fogarty, Christopher L; Pussinen, Pirkko J; Halonen, Lauri; Groop, Per-Henrik; Metsälä, Markus; Lehto, Markku

    updating

    Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (updating ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria.

  12. Search for Extraterrestrial Origin of Atmospheric Trace Molecules Radio Sub-MM Observations During The Leonids

    NASA Technical Reports Server (NTRS)

    Depois, D.; Ricaud, P.; Lautie, N.; Schneider, N.; Jacq, T.; Biver, N.; Lis, D.; Chamberlain, R.; Phillips, T.; Miller, M.;

    updating

    HCN is a minor constituent of the Earth atmosphere, with a typical volume mixing ratio around 10(exp -10) HCN per air molecule. At present, the main source of HCN in the lower atmosphere is expected to be biomass burning. The atmospheric HCN has been observed since 1981, first in the infrared, then at microwave radio frequencies. Globally, above 30 km, HCN measurements are in excess of model predictions based on standard photochemistry and biomass burning as the only HCN source. This excess has been explained by: 1) ion-catalyzed reactions in the entire stratosphere, involving CH.3CN as a precursor and/or 2) a high altitude source as a result of chemical production from the methyl radical CH3, or from injection or production by meteors. HCN is a minor constituent of cometary ices. HCN polymers or copolymers have been suggested as constituents of cometary refractory organic matter, and would thus be present in the incoming meteoroids, if these polymers survived their stay in interplanetary space after ejection. HCN may also be created from the CN radical decomposition product of organic carbon, after reaction with hydrogen-bearing molecules. To test the hypothesis of HCN input by meteoroids or the formation in the upper atmosphere from meteoric ablation products, we decided to monitor the HCN submillimeter lines around a major shower: the Leonids.

  13. Isotopic signatures of anthropogenic CH4 sources in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Sherwood, O. A.; Dlugokencky, E. J.; Kessler, R.; Giroux, L.; Worthy, D. E. J.

    updating

    A mobile system was used for continuous ambient measurements of stable CH4 isotopes (12CH4 and 13CH4) and ethane (C2H6). This system was used during a winter mobile campaign to investigate the CH4 isotopic signatures and the C2H6/CH4 ratios of the main anthropogenic sources of CH4 in the Canadian province of Alberta. Individual signatures were derived from δ13CH4 and C2H6 measurements in plumes arriving from identifiable single sources. Methane emissions from beef cattle feedlots (n = 2) and landfill (n = 1) had δ13CH4 signatures of -66.7 ± 2.4‰ and -55.3 ± 0.2‰, respectively. The CH4 emissions associated with the oil or gas industry had distinct δ13CH4 signatures, depending on the formation process. Emissions from oil storage tanks (n = 5) had δ13CH4 signatures ranging from -54.9 ± 2.9‰ to -60.6 ± 0.6‰ and non-detectable C2H6, characteristic of secondary microbial methanogenesis in oil-bearing reservoirs. In contrast, CH4 emissions associated with natural gas facilities (n = 8) had δ13CH4 signatures ranging from -41.7 ± 0.7‰ to -49.7 ± 0.7‰ and C2H6/CH4 molar ratios of 0.10 for raw natural gas to 0.04 for processed/refined natural gas, consistent with thermogenic origins. These isotopic signatures and C2H6/CH4 ratios have been used for source discrimination in the weekly atmospheric measurements of stable CH4 isotopes over a two-month winter period at the Lac La Biche (LLB) measurement station, located in Alberta, approximately 200 km northeast of Edmonton. The average signature of -59.5 ± 1.4‰ observed at LLB is likely associated with transport of air after passing over oil industry sources located south of the station.

  14. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine.

    PubMed

    Hamid, Ahmed M; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G

    updating

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N(+·)(HCN)n and C4H4N2 (+·)(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH(+)(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH(δ+)⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH(+)⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH(+)⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH(δ+)⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CH(δ+)⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH(δ+) centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  15. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    NASA Astrophysics Data System (ADS)

    Hamid, Ahmed M.; El-Shall, M. Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G.

    updating

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N+.(HCN)n and C4H4N2+.(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH+(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CHδ+&ctdot;NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH+&ctdot;NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH+&ctdot;NCH..NCH&ctdot;NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CHδ+&ctdot;NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CHδ+&ctdot;NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CHδ+ centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  16. Evaluation of advanced bladder technology

    NASA Technical Reports Server (NTRS)

    Christensen, M. V.; Pasternak, R. A.

    updating

    Research conducted during this period is reported. Studies presented include: (1) diffusion and permeation of CO2, O2, N2, and NO2 through polytetra fluoroethylene; (2) diffusion, permeation and solubility of simple gases (CO2, O2, N2, CH4, C2H6, C3H8, and C2H4) through a copolymer of hexafluoro propylene and tetrafluoro ethylene (FEP); (3) viscous flow and diffusion of gases throug small apertures; (4) diffusion and permeation of O2, N2, CO2, CH4, C2H6, and C3H8 through nitroso rubber; and (5) results of gas transport studies with carborane siloxane, nitroso rubber, silicone membrane, krytox coating on teflon, and FEP coated glass cloth. Publications generated under this program are listed.

  17. Seasonal cycle and secular trend of the total and tropospheric column abundance of ethane above the Jungfraujoch

    NASA Technical Reports Server (NTRS)

    Ehhalt, D. H.; Schmidt, U.; Zander, R.; Demoulin, P.; Rinsland, C. P.

    updating

    The secular trend and the seasonal cycle of the total and the tropospheric column abundances of C2H6 over the Jungfraujoch Station (Switzerland) were deduced from infrared solar spectra recorded in 1951 and from 1984 to 1988. Results show a definite seasonal variation in the total vertical column abundance of C2H6, with a maximum of (1.43 + or - 0.03) x 10 to the 16th molecules/sq cm during March and April and a minimum in the fall; the ratio between the maximum and the minimum column abundances was found to be 1.62 + or - 0.11. The secular trend in the tropospheric burden above the Jungfraujoch was found to be (0.85 + or - 0.3) percent/yr.

  18. A theoretical study of the reaction of Ti+ with ethane

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy; Fedorov, Dmitri G.; Gordon, Mark S.

    updating

    The doublet and quartet potential energy surfaces for the Ti++C2H6→TiC2H4++H2 and Ti++C2H6→TiCH2++CH4 reactions are studied using density functional theory (DFT) with the B3LYP functional and ab initio coupled cluster CCSD(T) methods with high quality basis sets. Structures have been optimized at the DFT level and the minima connected to each transition state (TS) by following the intrinsic reaction coordinate (IRC). Relative energies are calculated both at the DFT and coupled-cluster levels of theory. The relevant parts of the potential energy surface, especially key transition states, are also studied using multireference wave functions with the final energetics obtained with multireference second-order perturbation theory.

  19. Double differential cross sections of ethane molecule

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev

    updating

    Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.

  20. Separation of C2 hydrocarbons from methane in a microporous metal-organic framework

    NASA Astrophysics Data System (ADS)

    Tang, Fu-Shun; Lin, Rui-Biao; Lin, Rong-Guang; Zhao, John Cong-Gui; Chen, Banglin

    updating

    The recovery of C2 hydrocarbons including acetylene, ethylene and ethane is challenging but important for natural gas upgrading. The separation of C2 hydrocarbons over methane was demonstrated here by using a microporous metal-organic framework [Zn3(OH)2(SDB)2] (H2SDB = 4,4'-sulfonyldibenzoic acid) consisting narrow one-dimensional pore channels. Gas sorption experiments revealed that this MOF material showed considerable uptake capacity for C2H2, C2H4 and C2H6 under ambient conditions, while its capacity for CH4 was very low. High selectivity from IAST calculations for C2H2/CH4, C2H4/CH4 and C2H6/CH4 binary mixtures demonstrated that this MOF material were promising for efficiently separating important separation of C2 hydrocarbons from methane in natural gas processing.

  1. Synthesis of BaW2O7-ethylene glycol inorganic-organic hybrid and its topochemical transformation to thin WS2 nanoplates

    NASA Astrophysics Data System (ADS)

    Afanasiev, Pavel

    updating

    A novel inorganic-organic hybrid barium tungstate - ethylene glycol Ba(C2H6O2)W2O7 phase has been prepared by non-aqueous precipitation and characterized. According to powder X-ray diffraction, the solid has an orthorhombic lattice (a = b = 6.415 Å, c = 13.05 Å) and represents a derivative of the H2W2O7 lamellar acid. The Ba(C2H6O2)W2O7 hybrid material is a layered solid and crystallizes as thin plates, which can be further topotacticaly transformed to few-layer WS2 nanoplates. Tungsten sulfide as obtained possesses high specific surface area and increased defectness of layers. Thin-layer WS2 materials as prepared show advantageous properties as hydrogen evolution electrocatalysts, or in combination with TiO2 as co-catalysts for photo catalytic hydrogen production from methanol.

  2. Effects of nonmethane hydrocarbons in the atmosphere

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Cicerone, R. J.

    updating

    An investigation was conducted to determine whether nonmethane hydrocarbons (NMHC) are abundant enough to have a significant impact upon the ambient photochemistry. The vertical distribution of C2H6, C2H2, C3H8, C4H10, and C5H12 in the altitude range from 0 to 40 km was calculated in this connection. A one-dimensional steady state model with coupled photochemistry and vertical transport was employed in the investigation. The calculations imply that measurable quantities of relatively unreactive NMHC, especially C2H6 and C2H2, may be present in the upper troposphere and stratosphere. The results indicate, however, that NMHC are not likely to have a large impact on the background photochemistry of the troposphere, although local effects near source regions are probable. The findings support the current practice of many modelers who neglect NMHC in their calculations.

  3. Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser

    SciTech Connect

    Li, Chunguang; Dong, Lei; Zheng, Chuantao

    A mid-infrared ethane (C 2H 6) sensor based on a wavelength modulation spectroscopy (WMS) technique was developed using a thermoelectrically cooled (TEC), continuous-wave (CW) interband cascade laser (ICL) emitting at 3.34 μm and a dense multi-pass gas cell (MPGC, 17 × 6.5 × 5.5 cm 3) with a 54.6 m optical path length. A compact optical sensor system with a physical size of 35.5 × 18 × 12.5 cm 3 was designed and constructed. An ICL was employed for targeting a strong C 2H 6 line at 2996.88 cm -1 at C 2H 6. The sensor performance, including the minimum detection limit (MDL) and the stability were improved by reducing the effect of laser power drift by means of the 2f/1f-WMS technique. A MDL of ~1.2 parts per billion (ppbv) for 2f-WMS and ~1.0 ppbv for 2f/1f-WMS were achieved, respectively, with a measurement time of 4 s. The MDL was further improved from 299 pptv (@108 s for 2f-WMS) to 239 pptv (@208 s for 2f/1f-WMS), based on an Allan deviation analysis.The rise time (@0 → 100 ppbv) and fall time (@100 → 0 ppbv) were determined to be ~64 s and ~48 s,respectively, at a gas pressure of C 2H 6 sensor operation.« less

  4. Fugitive Emissions Attribution via Simultaneous Measurement of Ethane and Methane Isotopic Signature in Vehicle-based Surveys

    NASA Astrophysics Data System (ADS)

    Marshall, A. D.; Williams, J. P.; Baillie, J.; MacKay, K.; Risk, D. A.; Fleck, D.

    updating

    Detecting and attributing sub-regulatory fugitive emissions in the energy sector remains a priority for industry and environmental groups alike. Vehicle-based geochemical emission detection and attribution is seeing increasingly widespread use. In order to distinguish between biogenic and thermogenic emission sources, these techniques rely on tracer species like δ13C of methane (δ13CH4). In this study, we assessed the performance of the new Picarro G2210-i, a cavity ring-down spectroscopy (CRDS) analyzer that measures δ13CH4 and ethane (C2H6) simultaneously to provide increased thermogenic tracer power. In the lab, we assessed drift and other performance characteristics relative to a G2201-i (existing isotopic CH4 and carbon dioxide analyzer). We performed model experiments to synthetically assess the new analyzer's utility for oil and gas developments with differing levels of ethane. Lastly, we also conducted survey drives in a high-ethane oilfield using both the G2210-i and G2201-i. Results were very positive. The G2210-i showed minimal drift, as expected. Allan deviation experiments showed that the G2210-i has a precision of 0.482 ppb for CH4 and 3.15 ppb for C2H6 for 1Hz measurements. Computational experiments confirmed that the resolution of C2H6 is sufficient for detecting and attributing thermogenic CH4 at distance in oil and gas settings, which was further validated in the field where we measured simultaneous departures in δ13CH4 and C2H6 within plumes from venting infrastructure. C2:C1 ratios also proved very useful for attribution. As we move to reduce emissions from the energy industry, this analyzer presents new analytical possibilities that will be of high value to industry stakeholders.

  5. Highly Depleted Ethane and Slightly Depleted Methanol in Comet 21P/Giacobini-Zinner: Application of Empirical g-Factors for CH3OH Near 50K

    NASA Technical Reports Server (NTRS)

    DiSanti, Michael A.; Bonev, Boncho P.; Mumma, Michael J.; Villanueva, Geronimo L.

    updating

    We report high resolution (lambda/delta lambda approximately 24,000) observations of Comet 21 P/Giacobini-Zinner (21P) between approximately updating micrometers, obtained with NIRSPEC at Keck 2 on UT 2005 June 03 (R(sub h) = 1.12 AU, delta = 1.45 AU). These simultaneously sampled multiple emissions from the v7 band of C2H6 and the v2 and v3 bands of CH3OH, together with several hot bands of H2O, permitting a direct measure of parent volatile abundances in 21P. Our spectra reveal highly depleted C2H6 (0.13-0.14 percent relative to H2O) and CH3OH/C2H6 approximately 10, consistent with previously published abundances from observations in the IR [1,2] and millimeter sub-mm (reporting CH3OH/H2O [3]) during its previous apparition in 1998. We observed similarly high CH3OH/C2H6, and also similar rotational temperature to that measured for 21 P, in Comet 8P/Tuttle [4,5]. We used our (higher signal-to-noise) NIRSPEC observations of 8P to produce effective (empirical) CH3OH g-factors for several lines in the v2 band. These will be presented together with interpretation of our results, including constraints on the spin temperature of water. We acknowledge support from the NASA Planetary Atmospheres, Planetary Astronomy, and Astrobiology Programs and from the NSF Astronomy and Astrophysics Research Grants Program.

  6. Temperature and abundances in the Jovian auroral stratosphere. 1: Ethane as a probe of the millibar region

    NASA Technical Reports Server (NTRS)

    Livengood, Timothy A.; Kostiuk, Theodor; Espenak, Fred

    updating

    We report infrared heterodyne spectroscopy (lambda/delta lambda is approximately 10(exp 6)) of C2H6 emission at 11.9 microns from the northern Jovian auroral region, in observations conducted over December 2-7, 1989. Accurately measured line shapes provide information on C2H6 abundance as well as temperature and permit retrieval of the source pressure region. Enhanced emission was observed in the longitude range approximately 150-180 deg at approximately 60 deg north latitude, approximately corresponding to the CH4 7.8 micron hot spot and the region of brightest UV aurora. Significant brightness variations were observed in the hot spot emissions on a time scale of approximately 20 hours. Analysis of the brightest hot spot spectra indicates C2H6 mole fractions of approximately (6.3-6.8) x 10(exp -6) at temperatures of approximately 182-184 K at 1 mbar, compared to mole fractions of (3.8 +/- 1.4) x 10(exp -6) averaged over spectra outside the hot spot at a temperature of approximately 172 K at the same pressure. Fixing the mole fraction to the lower limit retrieved in the quiescent (non-hot spot) region allows the temperature at 1 mbar to be as high as approximately 200 K within the hot spot. These results provide upper limits to the temperature increase near the source of the C2H6 thermal infrared emission. Combined with results from similar measurements of ethylene emission probing the approximately 10-microbar region (Kostiuk et al., this issue), altitude information on the thermal structure of the Jovian auroral stratosphere can be obtained for the first time.

  7. Nitrogen-broadened lines of ethane at 150 K

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    updating

    Spectral transmittance has been measured in the nu9 fundamental band of C2H6 at 150 K using a Fourier transform spectrometer with apodized spectral resolution of 0.06/cm. Comparison of observed spectral transmittance with a line-by-line computation using the spectral catalog of Atakan et al. (1983) has yielded N2-broadened half-widths at 150 K.

  8. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    updating

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  9. Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser

    DOE PAGES

    Li, Chunguang; Dong, Lei; Zheng, Chuantao; ...

    updating

    A mid-infrared ethane (C 2H 6) sensor based on a wavelength modulation spectroscopy (WMS) technique was developed using a thermoelectrically cooled (TEC), continuous-wave (CW) interband cascade laser (ICL) emitting at 3.34 μm and a dense multi-pass gas cell (MPGC, 17 × 6.5 × 5.5 cm 3) with a 54.6 m optical path length. A compact optical sensor system with a physical size of 35.5 × 18 × 12.5 cm 3 was designed and constructed. An ICL was employed for targeting a strong C 2H 6 line at 2996.88 cm -1 at C 2H 6. The sensor performance, including the minimum detection limit (MDL) and the stability were improved by reducing the effect of laser power drift by means of the 2f/1f-WMS technique. A MDL of ~1.2 parts per billion (ppbv) for 2f-WMS and ~1.0 ppbv for 2f/1f-WMS were achieved, respectively, with a measurement time of 4 s. The MDL was further improved from 299 pptv (@108 s for 2f-WMS) to 239 pptv (@208 s for 2f/1f-WMS), based on an Allan deviation analysis.The rise time (@0 → 100 ppbv) and fall time (@100 → 0 ppbv) were determined to be ~64 s and ~48 s,respectively, at a gas pressure of C 2H 6 sensor operation.« less

  10. Four N(7)-benzyl-substituted 4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-spiro-1'-cyclohexane-2',6'-diones as ethanol hemisolvates: similar molecular constitutions but different crystal structures.

    PubMed

    Cruz, Silvia; Trilleras, Jorge; Cobo, Justo; Low, John N; Glidewell, Christopher

    updating

    3-tert-Butyl-7-(4-chlorobenzyl)-4',4'-dimethyl-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-spiro-1'-cyclohexane-2',6'-dione ethanol hemisolvate, C(30)H(34)ClN(3)O(2) x 0.5C(2)H(6)O, (I), its 7-(4-bromobenzyl)- analogue, C(30)H(34)BrN(3)O(2) x 0.5C(2)H(6)O, (II), and its 7-(4-methylbenzyl)- analogue, C(31)H(37)N(3)O(2) x 0.5C(2)H(6)O, (III), are isomorphous, with the ethanol component disordered across a twofold rotation axis in the space group C2/c. In the corresponding 7-[4-(trifluoromethyl)benzyl]- compound, C(31)H(34)F(3)N(3)O(2) x 0.5C(2)H(6)O, (IV), the ethanol component is disordered across a centre of inversion in the space group P\\overline{1}. In each of (I)-(IV), the reduced pyridine ring adopts a half-chair conformation. The heterocyclic components in (I)-(III) are linked into centrosymmetric dimers by a single C-H...pi interaction, with the half-occupancy ethanol component linked to the dimer by a combination of C-H...O and O-H...pi(arene) hydrogen bonds. The heterocyclic molecules in (IV) are linked into chains of centrosymmetric rings by C-H...O and C-H...pi hydrogen bonds, again with the half-occupancy ethanol component pendent from the chain. The significance of this study lies in the isomorphism of the related derivatives (I)-(III), in the stoichiometric hemisolvation by ethanol, where the disordered solvent molecule is linked to the heterocyclic component by a two-point linkage, and in the differences between the crystal structures of (I)-(III) and that of (IV).

  11. Ppbv-Level Ethane Detection Using Quartz-Enhanced Photoacoustic Spectroscopy with a Continuous-Wave, Room Temperature Interband Cascade Laser

    PubMed Central

    Li, Chunguang; Dong, Lei; Zheng, Chuantao; Lin, Jun; Wang, Yiding

    updating

    A ppbv-level quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane (C2H6) sensor was demonstrated by using a 3.3 μm continuous-wave (CW), distributed feedback (DFB) interband cascade laser (ICL). The ICL was employed for targeting a strong C2H6 absorption line located at 2996.88 cm−1 in its fundamental absorption band. Wavelength modulation spectroscopy (WMS) combined with the second harmonic (2f) detection technique was utilized to increase the signal-to-noise ratio (SNR) and simplify data acquisition and processing. Gas pressure and laser frequency modulation depth were optimized to be 100 Torr and 0.106 cm−1, respectively, for maximizing the 2f signal amplitude. Performance of the QEPAS sensor was evaluated using specially prepared C2H6 samples. A detection limit of 11 parts per billion in volume (ppbv) was obtained with a 1-s integration time based on an Allan-Werle variance analysis, and the detection precision can be further improved to ~1.5 ppbv by increasing the integration time up to 230 s. PMID:updating

  12. On the importance of electron impact processes in excimer-pumped alkali laser-induced plasmas

    SciTech Connect

    Markosyan, Aram H.

    We present that the excimer-pumped alkali laser (XPAL) system has recently been demonstrated in several different mixtures of alkali vapor and rare gas. Without special preventive measures, plasma formation during operation of XPAL is unavoidable. Some recent advancements in the availability of reliable data for electron impact collisions with atoms and molecules have enabled development of a complete reaction mechanism to investigate XPAL-induced plasmas. Here, we report on pathways leading to plasma formation in an Ar/C 2H 6/CsAr/C2H6/Cs XPAL sustained at different cell temperatures. We find that depending on the operating conditions, the contribution of electron impact processes can bemore » as little as bringing the excitation of Cs(P 2) states to higher level Cs** states, and can be as high as bringing Cs(P 2) excited states to a full ionization. Increasing the input pumping power or cell temperature, or decreasing the C 2H 6 mole fraction leads to electron impact processes dominating in plasma formation over the energy pooling mechanisms previously reported in literature.« less

  13. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers

    PubMed Central

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    updating

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship. PMID:updating

  14. A Ni-Doped Carbon Nanotube Sensor for Detecting Oil-Dissolved Gases in Transformers.

    PubMed

    Lu, Jia; Zhang, Xiaoxing; Wu, Xiaoqing; Dai, Ziqiang; Zhang, Jinbin

    updating

    C2H2, C2H4, and C2H6 are important oil-dissolved gases in power transformers. Detection of the composition and content of oil-dissolved gases in transformers is very significant in the diagnosis and assessment of the state of transformer operations. The commonly used oil-gas analysis methods have many disadvantages, so this paper proposes a Ni-doped carbon nanotube (Ni-CNT) gas sensor to effectively detect oil-dissolved gases in a transformer. The gas-sensing properties of the sensor to C2H2, C2H4, and C2H6 were studied using the test device. Based on the density functional theory (DFT) the adsorption behaviors of the three gases on intrinsic carbon nanotubes (CNTs) and Ni-CNTs were calculated. The adsorption energy, charge transfer, and molecular frontier orbital of the adsorption system were also analyzed. Results showed that the sensitivity of the CNT sensor to the three kinds of gases was in the following order: C2H2 > C2H4 > C2H6. Moreover, the doped Ni improved the sensor response, and the sensor response and gas concentration have a good linear relationship.

  15. Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania

    USGS Publications Warehouse

    Révész, K. M.; Breen, K.J.; Baldassare, A.J.; Burruss, R.C.

    updating

    The origin of the combustible gases in groundwater from glacial-outwash and fractured-bedrock aquifers was investigated in northern Tioga County, Pennsylvania. Thermogenic methane (CH4) and ethane (C2H6) and microbial CH4 were found. Microbial CH4 is from natural in situ processes in the shale bedrock and occurs chiefly in the bedrock aquifer. The δ13C values of CH4 and C2H6 for the majority of thermogenic gases from water wells either matched or were between values for the samples of non-native storage-field gas from injection wells and the samples of gas from storage-field observation wells. Traces of C2H6 with microbial CH4 and a range of C and H isotopic compositions of CH4 indicate gases of different origins are mixing in sub-surface pathways; gas mixtures are present in groundwater. Pathways for gas migration and a specific source of the gases were not identified. Processes responsible for the presence of microbial gases in groundwater could be elucidated with further geochemical study.

  16. An Uncommon Carboxyl-Decorated Metal-Organic Framework with Selective Gas Adsorption and Catalytic Conversion of CO2.

    PubMed

    Li, Yong-Zhi; Wang, Hai-Hua; Yang, Hong-Yun; Hou, Lei; Wang, Yao-Yu; Zhu, Zhonghua

    updating

    A new three-dimensional (3D) framework, [Ni(btzip)(H 2 btzip)]⋅2 DMF⋅2 H 2 O (1) (H 2 btzip=4,6-bis(triazol-1-yl)isophthalic acid) as an acidic heterogeneous catalyst was constructed by the reaction of nickel wire and a triazolyl-carboxyl linker. Framework 1 possesses intersected 2D channels decorated by free COOH groups and uncoordinated triazolyl N atoms, leading to not only high CO 2 and C 2 H 6 adsorption capacity but also significant selective capture for CO 2 and C 2 H 6 over CH 4 and CO in 273-333 K. Moreover, 1 reveals chemical stability toward water. Grand Canonical Monte Carlo simulations confirmed the multiple CO 2 - and C 2 H 6 -philic sites. As a result of the presence of accessible Brønsted acidic COOH groups in the channels, the activated framework demonstrates highly efficient catalytic activity in the cycloaddition reaction of CO 2 with propylene oxide/4-chloromethyl-1,3-dioxolan-2-one/3-butoxy-1,2-epoxypropane into cyclic carbonates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Jovian Northern Ethane Aurora and the Solar Cycle

    NASA Technical Reports Server (NTRS)

    Kostiuk,T.; Livengood, T.; Fast, K.; Buhl, D.; Goldstein, J.; Hewagama, T.

    updating

    Thermal infrared auroral spectra from Jupiter's North polar region have been collected from 1979 to 1998 in a continuing study of long-term variability in the northern thermal IR aurora, using C2H6 emission lines near 12 microns as a probe. Data from Voyager I and 2 IRIS measurements and ground based spectral measurements were analyzed using the same model atmosphere to provide a consistent relative comparison. A retrieved equivalent mole fraction was used to compare the observed integrated emission. Short term (days), medium term (months) and long term (years) variability in the ethane emission was observed. The variability Of C2H6 emission intensities was compared to Jupiter's seasonal cycle and the solar activity cycle. A positive correlation appears to exist, with significantly greater emission and short term variability during solar maxima. Observations on 60 N latitude during increased solar activity in 1979, 1989, and most recently in 1998 show up to 5 times brighter integrated line emission of C2H6 near the north polar "hot spot" (150-210 latitude) than from the north quiescent region. Significantly lower enhancement was observed during periods of lower solar activity in 1982, 1983, 1993, and 1995. Possible sources and mechanisms for the enhancement and variability will be discussed.

  18. Laser induced fluorescence measurements and modeling of nitric oxide in high-pressure premixed flames

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Laurendeau, Normand M.

    updating

    Laser-induced fluorescence (LIF) has been applied to the quantitative measurement of nitric oxide (NO) in premixed, laminar, high-pressure flames. Their chemistry was also studied using three current kinetics schemes to determine the predictive capabilities of each mechanism with respect to NO concentrations. The flames studied were low-temperature (1600 less than T less than 1850K) C2H6/O2/N2 and C2H6/O2/N2 flames, and high temperature (2100 less than T less than 2300K) C2H6/O2/N2 flames. Laser-saturated fluorescence (LSF) was initially used to measure the NO concentrations. However, while the excitation transition was well saturated at atmospheric pressure, the fluorescence behavior was basically linear with respect to laser power at pressures above 6 atm. Measurements and calculations demonstrated that the fluorescence quenching rate variation is negligible for LIF measurements of NO at a given pressure. Therefore, linear LIF was used to perform quantitative measurements of NO concentration in these high-pressure flames. The transportability of a calibration factor from one set of flame conditions to another also was investigated by considering changes in the absorption and quenching environment for different flame conditions. The feasibility of performing LIF measurements of (NO) in turbulent flames was studied; the single-shot detection limit was determined to be 2 ppm.

  19. Temporally resolved plasma spectroscopy for analyzing natural gas components

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Tsumaki, Naomasa; Ito, Tsuyohito

    updating

    Temporally resolved plasma spectroscopy has been carried out in two different hydrocarbon gas mixtures (CH4/Ar and C2H6/Ar) to explore the possibility of a new gas sensor using plasma emission spectral analysis. In this experiment, a nanosecond-pulsed plasma discharge was applied to observe optical emissions representing the initial molecular structure. It is found that a CH emission intensity in CH4/Ar is higher than that in C2H6/Ar. On the other hand, C2 intensities are almost the same degree between CH4/Ar and C2H6/Ar. This finding indicates that the emission intensity ratio of CH to C2 might be an effective index for a gas analysis. In addition, a time for the highest emission intensities of CH and C2 is several nanoseconds later than that of Ar. This result suggests that spectra from the initial molecular structure may be observed at the early stage of the discharge before molecules are fully dissociated, and this is currently in progress.

  20. Chemical reactions in the nitrogen-acetone ice induced by cosmic ray analogues: relevance for the Solar system

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; Andrade, D. P. P.; da Silveira, E. F.; Alcantara, K. F.; Boduch, P.; Rothard, H.

    updating

    The radiolysis of 10:1 nitrogen:acetone mixture, condensed at 11 K, by 40 MeV 58Ni11 + ions is studied. These results are representative of studies concerning Solar system objects, such as transneptunian objects, exposed to cosmic rays. Bombardment by cosmic rays triggers chemical reactions leading to synthesis of larger molecules. In this work, destruction cross-sections of acetone and nitrogen molecules in solid phase are determined and compared with those for pure acetone. The N2 column density decreases very fast indicating that, under irradiation, nitrogen leaves quickly a porous sample. The most abundant molecular species formed in the radiolysis are C3H6, C2H6, N3, CO, CH4 and CO2. Some N-bearing species are also formed, but with low production yield. Dissolving acetone in nitrogen decreases the formation cross-sections of CH4, CO2 and H2CO, while increases those for CO and C2H6 species. This fact may explain the presence of C2H6 in Pluto's surface where CH4 is not pure, but diluted in an N2 matrix. The formation of more complex molecules, such as HNCO and, possibly, glycine is observed, suggesting the formation of small prebiotic species in objects beyond Neptune from acetone diluted in a N2 matrix irradiated by cosmic rays.

100>100>100>

[external_footer]
See more articles in the category: Hóa học
READ  Na2CO3 + H2O → NaHCO3 + NaOH – Balanced equation

Leave a Reply